2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 81 results for: ENGR

ENGR 1: Want to Be an Engineer?

This course is designed for you if you are a new student who has a hypothesis that you want to be a scientist, mathematician, or engineer but don't yet know what you want to major in. As a scientist, you know that you need data to test your hypothesis. As a design thinker, you know that there is no way forward except to be exposed to different things and weigh the results. As a potential engineer, you know that you need lots of information to make a decision. Each week a panel of faculty from STEM majors in the School of Engineering, the School of Humanities & Sciences, and Stanford Earth will present with the goal of helping you discover if their field is right for you.
Last offered: Autumn 2022

ENGR 2: Stanford Summer Engineering Academy

Offered in August prior to start of fall quarter for incoming first-year students participating in the Stanford Summer Engineering Academy (SSEA). This course is comprised of two parallel tracks: One focused on the development and practice of critical problem solving in Computer Science; a second focused on providing a strong foundation in Mathematics. Based on skills developed in both tracks, students also explore the breadth and depth of engineering disciplines from faculty across the School of Engineering. Available by application only.
Terms: Aut | Units: 2
Instructors: Reyes, K. (PI)

ENGR 2A: SSEA Seminar: Developing Your Leadership Toolkit

In this weekly seminar, SSEA students will learn practical leadership skills so they can successfully navigate academic and professional opportunities while at Stanford and achieve meaningful results. Mentorship and career exploration will also be delivered through an inspiring line up of guest speakers and interactive activities.
Terms: Aut | Units: 1
Instructors: Reyes, K. (PI)

ENGR 10: Introduction to Engineering Analysis

Integrated approach to the fundamental scientific principles that are the cornerstones of engineering analysis: conservation of mass, atomic species, charge, momentum, angular momentum, energy, production of entropy expressed in the form of balance equations on carefully defined systems, and incorporating simple physical models. Emphasis is on setting up analysis problems arising in engineering. Topics: simple analytical solutions, numerical solutions of linear algebraic equations, and laboratory experiences. Provides the foundation and tools for subsequent engineering courses. Prerequisite: AP Physics and AP Calculus or equivalent.
Terms: Sum | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR
Instructors: Cappelli, M. (PI)

ENGR 14: Intro to Solid Mechanics

Introduction to engineering analysis using the principles of engineering solid mechanics. Builds on the math and physical reasoning concepts in Physics 41 to develop skills in evaluation of engineered systems across a variety of fields. Foundational ideas for more advanced solid mechanics courses such as ME80 or CEE101A. Interactive lecture sessions focused on mathematical application of key concepts, with weekly complementary lab session on testing and designing systems that embody these concepts. Limited enrollment, subject to instructor approval. Pre-requisite: Physics 41. When signing up for this course make sure to sign up both for the lecture and for a Discussion Section.
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR

ENGR 15: Dynamics

The application of Newton's Laws to solve 2-D and 3-D static and dynamic problems, particle and rigid body dynamics, freebody diagrams, and equations of motion, with application to mechanical, biomechanical, and aerospace systems. Computer numerical solution and dynamic response. Prerequisites: Calculus (differentiation and integration) such as Math 19, 20; and ENGR 14 (statics and strength) or a mechanics course in physics such as PHYSICS 41.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

ENGR 20: Introduction to Chemical Engineering (CHEMENG 20)

Overview of chemical engineering through discussion and engineering analysis of physical and chemical processes. Topics: overall staged separations, material and energy balances, concepts of rate processes, energy and mass transport, and kinetics of chemical reactions. Applications of these concepts to areas of current technological importance: biotechnology, energy, production of chemicals, materials processing, and purification. Prerequisite: CHEM 31.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 21: Engineering of Systems

A high-level look at techniques for analyzing and designing complex, multidisciplinary engineering systems, such as aircraft, spacecraft, automobiles, power plants, cellphones, robots, biomedical devices, and many others. The need for multi-level design, modeling and simulation approaches, computation-based design, and hardware and software-in-the-loop simulations will be demonstrated through a variety of examples and case studies. Several aspects of system engineering will be applied to the design of large-scale interacting systems and contrasted with subsystems such as hydraulic systems, electrical systems, and brake systems. The use of design-thinking, story-boarding, mockups, sensitivity analysis, simulation, team-based design, and the development of presentation skills will be fostered through several realistic examples in several fields of engineering.
Terms: Spr | Units: 3

ENGR 40A: Introductory Electronics

Instruction will be completed in the first seven weeks of the quarter. Students not majoring in Electrical Engineering may choose to take only ENGR 40A; Electrical Engineering majors should take both ENGR 40A and ENGR 40B. Overview of electronic circuits and applications. Electrical quantities and their measurement, including operation of the oscilloscope. Basic models of electronic components including resistors, capacitors, inductors, and operational amplifiers. Lab. Lab assignments. Enrollment limited to 300.
Terms: Sum | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 40B: Introductory Electronics Part II

Instruction will be completed in the final three weeks of the quarter. Students should not enroll in ENGR 40B without having taken (or enrolling concurrently in) ENGR 40A. Project on digital hardware and software implementations of a robotic car. Lab. Lab assignments. Pre- or co-requisite: ENGR 40A. Enrollment limited to 300.
Last offered: Winter 2019
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints