2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 52 results for: CME ; Currently searching offered courses. You can also include unoffered courses

CME 334: Optimization Algorithms (CS 369O, MS&E 312)

Fundamental theory for solving continuous optimization problems with provable efficiency guarantees. Coverage of both canonical optimization methods and techniques, e.g. gradient descent, mirror descent, stochastic methods, acceleration, higher-order methods, etc. and canonical optimization problems, critical point computation for non-convex functions, smooth-convex function minimization, regression, linear programming, etc. Focus on provable rates for solving broad classes of prevalent problems including both classic problems and those motivated by large-scale computational concerns. Discussion of computational ramifications, fundamental information-theoretic limits, and problem structure. Prerequisite: linear algebra, multivariable calculus, probability, and proofs.
Terms: Win | Units: 3

CME 364A: Convex Optimization I (EE 364A)

Convex sets, functions, and optimization problems. The basics of convex analysis and theory of convex programming: optimality conditions, duality theory, theorems of alternative, and applications. Least-squares, linear and quadratic programs, semidefinite programming, and geometric programming. Numerical algorithms for smooth and equality constrained problems; interior-point methods for inequality constrained problems. Applications to signal processing, communications, control, analog and digital circuit design, computational geometry, statistics, machine learning, and mechanical engineering. Prerequisite: linear algebra such as EE263, basic probability.
Terms: Win | Units: 3

CME 364B: Convex Optimization II (EE 364B)

Continuation of 364A. Subgradient, cutting-plane, and ellipsoid methods. Decentralized convex optimization via primal and dual decomposition. Monotone operators and proximal methods; alternating direction method of multipliers. Exploiting problem structure in implementation. Convex relaxations of hard problems. Global optimization via branch and bound. Robust and stochastic optimization. Applications in areas such as control, circuit design, signal processing, and communications. Course requirements include project. Prerequisite: 364A.
Terms: Spr | Units: 3

CME 369: Computational Methods in Fluid Mechanics (ME 469)

The last two decades have seen the widespread use of Computational Fluid Dynamics (CFD) for analysis and design of thermal-fluids systems in a wide variety of engineering fields. Numerical methods used in CFD have reached a high degree of sophistication and accuracy. The objective of this course is to introduce 'classical' approaches and algorithms used for the numerical simulations of incompressible flows. In addition, some of the more recent developments are described, in particular as they pertain to unstructured meshes and parallel computers. An in-depth analysis of the procedures required to certify numerical codes and results will conclude the course.
Terms: Spr | Units: 3

CME 390: Curricular Practical Training

Educational opportunities in high technology research and development labs in applied mathematics. Qualified ICME students engage in internship work and integrate that work into their academic program. Students register during the quarter they are employed and complete a research report outlining their work activity, problems investigated, results, and follow-on projects they expect to perform. May be repeated three times for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 3 times (up to 3 units total)

CME 391: Ph.D. Research Rotation

First and second year ICME PhD students enroll under faculty sponsor for research rotation units.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable 3 times (up to 9 units total)

CME 399: Special Research Topics in Computational and Mathematical Engineering

Graduate-level research work not related to report, thesis, or dissertation. May be repeated for credit.
Terms: Aut | Units: 1-15 | Repeatable 6 times (up to 30 units total)

CME 400: Ph.D. Research

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

CME 444: Computational Consulting

Advice by graduate students under supervision of ICME faculty. Weekly briefings with faculty adviser and associated faculty to discuss ongoing consultancy projects and evaluate solutions. May be repeated for credit.
Terms: Spr | Units: 1-3 | Repeatable for credit

CME 500: Departmental Seminar

This seminar series explores the practical application of ICME coursework and research. Presenters are industry practitioners of computational and mathematical engineering, often ICME alumni or technical staff from affiliate organizations. May be repeated for credit.
Terms: Spr | Units: 1 | Repeatable 6 times (up to 6 units total)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints