2012-2013 2013-2014 2014-2015 2015-2016 2016-2017
Browse
by subject...
    Schedule
view...
 

11 - 20 of 39 results for: ENGR

ENGR 80: Introduction to Bioengineering (Engineering Living Matter) (BIOE 80)

Students completing BIOE.80 should have a working understanding for how to approach the systematic engineering of living systems to benefit all people and the planet. Our main goals are (1) to help students learn ways of thinking about engineering living matter and (2) to empower students to explore the broader ramifications of engineering life. Specific concepts and skills covered include but are not limited to: capacities of natural life on Earth; scope of the existing human-directed bioeconomy; deconstructing complicated problems; reaction & diffusion systems; microbial human anatomy; conceptualizing the engineering of biology; how atoms can be organized to make molecules; how to print DNA from scratch; programming genetic sensors, logic, & actuators; biology beyond molecules (photons, electrons, etc.); what constraints limit what life can do?; what will be the major health challenges in 2030?; how does what we want shape bioengineering?; who should choose and realize various competing bioengineering futures?
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter (ABCD/NP)

ENGR 100: Teaching Public Speaking

The theory and practice of teaching public speaking and presentation development. Lectures/discussions on developing an instructional plan, using audiovisual equipment for instruction, devising tutoring techniques, and teaching delivery, organization, audience analysis, visual aids, and unique speaking situations. Weekly practice speaking. Students serve as apprentice speech tutors. Those completing course may become paid speech instructors in the Technical Communications Program. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Vassar, M. (PI)

ENGR 102W: Writing for Engineers

Intensive practicum focusing on effective communication of technical, scientific, and professional information in industry and academia. Best writing practices for varied audiences, purposes, and media. Group workshops and individual conferences with instructors. Designed for undergraduates.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Harrison, K. (PI)

ENGR 103: Public Speaking (ENGR 203)

Priority to Engineering students. Introduction to speaking activities, from impromptu talks to carefully rehearsed formal professional presentations. How to organize and write speeches, analyze audiences, create and use visual aids, combat nervousness, and deliver informative and persuasive speeches effectively. Weekly class practice, rehearsals in one-on-one tutorials, videotaped feedback. Limited enrollment.
Terms: Aut, Win, Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Vassar, M. (PI)

ENGR 105: Feedback Control Design

Design of linear feedback control systems for command-following error, stability, and dynamic response specifications. Root-locus and frequency response design techniques. Examples from a variety of fields. Some use of computer aided design with MATLAB. Prerequisite: EE 102, ME 161, or equivalent.
Terms: Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

ENGR 119: Community Engagement Preparation Seminar (ENGR 219)

This seminar is designed for engineering students who have already committed to an experiential learning program working directly with a community partner on a project of mutual benefit. This seminar is targeted at students participating in the Summer Service Learning Program offered through Stanford¿s Global Engineering Program.
Terms: Spr | Units: 1 | Grading: Credit/No Credit

ENGR 131: Ethical Issues in Engineering

Ethical responsibilities of engineers in relation to society, employers, colleagues, and clients; cost-benefit-risk analysis, safety, and informed consent; the ethics of whistleblowing; ethical issues that face engineers as expert witnesses, consultants, and managers; ethical issues in engineering research, design, testing, manufacturing, and operations; ethical issues arising from engineering work in foreign countries; and ethical issues arising from the social, cultural, and environmental contexts of contemporary engineering work. Historical and contemporary case studies. Limited enrollment. Students must attend and complete an application at the first class session.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-Hum, WAY-ER | Grading: Letter (ABCD/NP)

ENGR 140A: Leadership of Technology Ventures

First of three-part sequence for students selected to the Mayfield Fellows Program. Management and leadership within high technology startups, focusing on entrepreneurial skills related to product and market strategy, venture financing and cash flow management, team recruiting and organizational development, and the challenges of managing growth and handling adversity in emerging ventures. Other engineering faculty, founders, and venture capitalists participate as appropriate. Recommended: accounting or finance course (MS&E 140, ECON 90, or ENGR 60).
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)

ENGR 150: Data Challenge Lab

In this lab, students develop the practical skills of data science by solving a series of increasingly difficult, real problems. Skills developed include: data manipulation, data visualization, exploratory data analysis, and basic modeling. The data challenges each student undertakes are based upon their current skills. Students receive one-on-one coaching and see how expert practitioners solve the same challenges. Limited enrollment; application required. See http://datalab.stanford.edu for more information.
Terms: Win, Spr | Units: 1-5 | Grading: Letter (ABCD/NP)

ENGR 154: Vector Calculus for Engineers (CME 100)

Computation and visualization using MATLAB. Differential vector calculus: analytic geometry in space, functions of several variables, partial derivatives, gradient, unconstrained maxima and minima, Lagrange multipliers. Introduction to linear algebra: matrix operations, systems of algebraic equations, methods of solution and applications. Integral vector calculus: multiple integrals in Cartesian, cylindrical, and spherical coordinates, line integrals, scalar potential, surface integrals, Green¿s, divergence, and Stokes¿ theorems. Examples and applications drawn from various engineering fields. Prerequisites: 10 units of AP credit (Calc BC with 4 or 5, or Calc AB with 5), or Math 41 and 42.
Terms: Aut, Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints