2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 33 results for: GENE ; Currently searching spring courses. You can expand your search to include all quarters

GENE 199: Undergraduate Research

Students undertake investigations sponsored by individual faculty members. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit

GENE 207: Microfluidic Device Laboratory (BIOE 301D)

BIOE 301D is a hands-on laboratory class designed to teach students the basics of microfluidic device design, fabrication, operation, and troubleshooting. During the first week of class, life science and clinical labs across campus will come and pitch ideas for devices that would advance their own research. Students will then choose projects, form teams, and attempt to create devices to meet these needs via two design/build/test iterations. In the process, students will learn how to design efficient experiments, navigate uncertainty, and communicate with end users and consider their needs. BIOE 301D is an intensive 3-4 unit course that requires significant student effort and enrollment is limited to 15 students due to space constraints within the Microfluidics Foundry. To prioritize students likely to get the most out of the course, we will ask students to fill out a course application form prior to the start of spring quarter; priority will be given to students that need this course as a requirement to graduate
Terms: Spr | Units: 3-4

GENE 212: Introduction to Biomedical Data Science Research Methodology (BIOE 212, BIOMEDIN 212, CS 272)

Capstone Biomedical Data Science experience. Hands-on software building. Student teams conceive, design, specify, implement, evaluate, and report on a software project in the domain of biomedicine. Creating written proposals, peer review, providing status reports, and preparing final reports. Issues related to research reproducibility. Guest lectures from professional biomedical informatics systems builders on issues related to the process of project management. Software engineering basics. Because the team projects start in the first week of class, attendance that week is strongly recommended. Prerequisites: BIOMEDIN 210 or 214 or 215 or 217 or 260. Preference to BMI graduate students. Consent of instructor required.NOTE: For students in the Department of Biomedical Data Science Program, this core course MUST be taken as a letter grade only.
Terms: Spr | Units: 3-5

GENE 215: Frontiers in Biological Research (BIOC 215, DBIO 215)

Students analyze cutting edge science, develop a logical framework for evaluating evidence and models, and enhance their ability to design original research through exposure to experimental tools and strategies. The class runs in parallel with the Frontiers in Biological Research seminar series. Students and faculty meet on the Tuesday preceding each seminar to discuss a landmark paper in the speaker's field of research. Following the Wednesday seminar, students meet briefly with the speaker for a free-range discussion which can include insights into the speakers' paths into science and how they pick scientific problems.
Terms: Aut, Win, Spr | Units: 1 | Repeatable 3 times (up to 3 units total)

GENE 218: Computational Analysis of Biological Information: Introduction to Python for Biologists (MI 218, PATH 218)

Computational tools for processing, interpretation, communication, and archiving of biological information. Emphasis is on sequence and digital microscopy/image analysis. Intended for biological and clinical trainees without substantial programming experience.
Terms: Spr | Units: 3

GENE 219: Current Issues in Genetics

Current Issues in Genetics is an in-house seminar series that meets each Academic Quarter for one hour per week (Friday, 4:00-5:00) and features talks by Genetics Department faculty, students, and postdoctoral fellows (with occasional visiting speakers). Thus, over the year, it provides a comprehensive overview of the work going on in the Department. First-year Ph.D. students in Genetics are required to enroll during all four Quarters, and students from other programs may be permitted to enroll with prior permission of the instructors.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 12 times (up to 12 units total)

GENE 220: Introduction to Genetics, Ethics, and Society

Focus is on examining the past, present, and future relationship between human genetics and society to evaluate the ethical implications of the research we conduct. Students will reflect on their personal roles and biases in order to develop the tools needed to conduct equitable, just, and inclusive research. Topics include the intersection between science and society; history of American eugenics; community-engaged research; race, ancestry, and identity; forensic genetics; behavioral genetics; and reproductive genetics. Preference to graduate students and postdocs working with genetic technologies or concepts. Formerly offered as BIOS 232
Terms: Spr | Units: 1-2

GENE 222: Cloud Computing for Biology and Healthcare (BIOMEDIN 222, CS 273C)

Big Data is radically transforming healthcare. To provide real-time personalized healthcare, we need hardware and software solutions that can efficiently store and process large-scale biomedical datasets. In this class, students will learn the concepts of cloud computing and parallel systems' architecture. This class prepares students to understand how to design parallel programs for computationally intensive medical applications and how to run these applications on computing frameworks such as Cloud Computing and High Performance Computing (HPC) systems. Prerequisites: familiarity with programming in Python and R.
Terms: Spr | Units: 3

GENE 223: Aging: Science and Technology for Longevity

Is aging another disease that can be ultimately cured? We will look at the biology of aging, transitioning from the molecular level through to the cellular and systems level. What are age-related diseases, can lifespan be extended and are centenarians different? Additionally how can artificial intelligence create robotic and software assistants as we get older and is living forever is possible in any form ? Topics will include: molecular theories of aging, impact of oxidative stress, age-related diseases, artificial intelligence for longevity, and innovations to improve the quality of life as we age.
Terms: Spr | Units: 2-3

GENE 224: Principles of Pharmacogenomics (BIOMEDIN 224)

This course is an introduction to pharmacogenomics, including the relevant pharmacology, genomics, experimental methods (sequencing, expression, genotyping), data analysis methods and bioinformatics. The course reviews key gene classes (e.g., cytochromes, transporters) and key drugs (e.g., warfarin, clopidogrel, statins, cancer drugs) in the field. Resources for pharmacogenomics (e.g., PharmGKB, Drugbank, NCBI resources) are reviewed, as well as issues implementing pharmacogenomics testing in the clinical setting. Reading of key papers, including student presentations of this work; problem sets; final project selected with approval of instructor. Prerequisites: two of BIO 41, 42, 43, 44X, 44Y or consent of instructor.
Terms: Aut, Spr | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints