2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 297 results for: ME

ME 1A: ME THEORY

ME 10AX: Design Thinking and the Art of Innovation

Design Thinking and the Art of Innovation is a hands-on seminar that introduces students to the multi-disciplinary practice of product, service, and experience design through the lenses of both art and engineering. A project-based, studio-driven class promises a deep dive into Design Thinking, Stanford's unique approach to problem finding and problem solving. Along with a survey of tools such as need finding and ethnography, structured brainstorming, rapid prototyping, visual communication, and story-telling, the class will include thought provoking and inspirational field trips to San Francisco's MOMA and other Bay Area museums, The San Francisco Ferry Building, and IDEO, the internationally renowned design and innovation firm headquartered in Palo Alto.nThis course is designed to introduce students to cutting edge techniques and processes used in the field of design. Through emphasis on design problems where aesthetics, technology, human behavior, and business needs overlap, students will both increase visual literacy and develop creative competence. The course provides an overview of contemporary professional design practice and exposes students to the world of design and the "wicked problems" that are the grist for the mill of design work.
Terms: Sum | Units: 2 | UG Reqs: WAY-CE

ME 10N: Form and Function of Animal Skeletons (BIOE 10N)

Preference to freshmen. The biomechanics and mechanobiology of the musculoskeletal system in human beings and other vertebrates on the level of the whole organism, organ systems, tissues, and cell biology. Field trips to labs.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Carter, D. (PI)

ME 11AX: The Art of Product Branding

This onsite course will present a comprehensive approach to Corporate Product Branding. Students will experience firsthand the development of a product brand from naming and developing positioning to the creation of a logo, website, and collateral. As a final project, students will present their overall brands to corporate executives. This project will include field trips to the client site and workshops with naming, positioning, and design professionals each day.
Terms: Sum | Units: 2

ME 12N: The Jet Engine

Preference to freshmen. How a jet engine works; the technologies and analytical techniques required to understand them. Dynamics, thermodynamics, turbomachinery, combustion, advanced materials, cooling technologies, and control systems. Visits to research laboratories, examination of a partially disassembled engine, and probable operation of a small jet engine. Prerequisites: high school physics.
Last offered: Autumn 2012 | UG Reqs: GER:DB-EngrAppSci

ME 13N: The Great Principle of Similitude

The rules of dimensional analysis were formulated by Isaac Newton, who called it The Great Principle of Similitude. On its surface, it is a look at the relationships between physical quantities by exploring their basic units. In fact, it is a powerful and formalized method to analyze complex physical phenomena, including those for which we cannot pose, much less solve, governing equations. Valuable to engineers and scientists as it helps perform back-of-the- envelope estimates and derive scaling laws for the design of machines and processes, the principle has been applied to the study of complex phenomena in biology, aerodynamics, chemistry, social science, astrophysics, and economics. Focus is on tools to perform such analyses. Examples include estimating the running speed of a hungry velociraptor, the probability of serious injury in a car accident, the cost of submarines, and the energy released by an atomic weapon. Students identify problems in everyday life and/or current world events to analyze with this tool.
Terms: Aut | Units: 3
Instructors: Santiago, J. (PI)

ME 16N: Energy & The Industrial Revolution - Past, Present & Future

When you flip a light switch, or drive to your neighborhood grocery store or do a Google search, it is easy to forget that we receive the benefit of 250 years of industrial revolution, which has been arguably the most remarkable period of human history. This revolution has resulted in exponential growth in the world¿s economy as well as unprecedented prosperity and improvements in our quality of life. The industrial revolution has been largely about how we sourced, distributed and used energy. It was and continues to be predominantly based on fossil energy. But the impact of our traditional energy sources on climate change is one of the most daunting issues of the 21st century because it will affect the world as a whole - the 7-10 billion people, businesses, nations, ecosystems. nnThe choice that our society is asked to make is often posed as follows: Should we continue our exponential economic growth based on fossil fuels and ignore the environment, or should we reduce our greenhouse gas emissions at the cost of our economic growth? This is a false choice because it is based on extrapolating the past. It does not account for the capacity for innovations in technology, finance and business to create sustainable energy future, one that allows the economy and our environment to be mutually inclusive. In short, we need a new industrial revolution. nnThis seminar course will: (a) provide a view of the current energy landscape and the magnitude of the challenge; (b) discuss some techno-economic trends that we are currently witnessing; and (c) identify opportunities to innovate in technology, finance and business that could create the foundations for a new industrial revolution.
Terms: Aut | Units: 3
Instructors: Majumdar, A. (PI)

ME 18Q: Teamology: Creative Teams and Individual Development

Preference to sophomores. Roles on a problem solving team that best suit individual creative characteristics. Two teams are formed for teaching experientially how to develop less conscious abilities from teammates creative in those roles. Reinforcement teams have members with similar personalities; problem solving teams are composed of people with maximally different personalities.
Terms: Aut | Units: 3
Instructors: Wilde, D. (PI)

ME 20N: Haptics: Engineering Touch

Students in this class will learn how to build, program, and control haptic devices, which are mechatronic devices that allow users to feel virtual or remote environments. In the process, students will gain an appreciation for the capabilities and limitations of human touch, develop an intuitive connection between equations that describe physical interactions and how they feel, and gain practical interdisciplinary engineering skills related to robotics, mechanical engineering, electrical engineering, bioengineering, and computer science. In-class laboratories will give students hands-on experience in assembling mechanical systems, making circuits, programming Arduino microcontrollers, testing their haptic creations, and using Stanford¿s student prototyping facilities. The final project for this class will involve creating a novel haptic device that could be used to enhance human interaction with computers, mobile devices, or remote-controlled robots.
Terms: Aut | Units: 3
Instructors: Okamura, A. (PI)

ME 21N: Renaissance Machine Design

Preference to freshmen. Technological innovations of the 1400s that accompanied the proliferation of monumental art and architecture by Brunelleschi, da Vinci, and others who designed machines and invented novel construction, fresco, and bronze-casting techniques. The social and political climate, from the perspective of a machine designer, that made possible and demanded engineering expertise from prominent artists. Hands-on projectsto provide a physical understanding of Renaissance-era engineering challenges and introduce the pleasure of creative engineering design. Technical background not required.
| UG Reqs: GER:DB-EngrAppSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints