2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

131 - 140 of 181 results for: BIO

BIO 303: Current Topics and Concepts in Population Biology, Ecology, and Evolution

Required of first-year PhD students in population biology, and ecology and evolution. Major conceptual issues and developing topics. This course isnnopen only to Biology PhD students and is not open to auditors."
Terms: Win | Units: 1

BIO 304: Current Topics and Concepts in Population Biology, Ecology, and Evolution

Required of first-year PhD students in population biology, and ecology and evolution. Major conceptual issues and developing topics. This course isnnopen only to Biology PhD students and is not open to auditors.
Terms: Spr | Units: 1

BIO 312: Ethical Issues in Ecology and Evolutionary Biology

Focus is on ethical issues addressed in Donald Kennedy's Academic Duty and others of importance to academics and scientists in the fields of ecology, behavior, and evolutionary biology. Discussions led by faculty and outside guests. Satisfies ethics course requirement for ecology and evolutionary biology. Prerequisite: PhD student in the ecology and evolutionary biology or marine program, or consent of instructor.
Terms: Aut | Units: 1
Instructors: Ehrlich, P. (PI)

BIO 31Q: Ants: Behavior, Ecology, and Evolution

Preference to sophomores. Behavior: the organization of colonies, how they operate without central control, how they resemble other complex systems like brains. Ecology: how populations of colonies change, comparing the ecology of a species in SW American desert and invasive Argentine ants. Evolution: why are there so many species of ants; how are they alike, how do they differ, and why? Ants as the theme for exploring how to do research in animal behavior, ecology, and evolution. Research project will be on the invasive Argentine ant: its distribution on campus, foraging trails, and nest structure.

BIO 325: The Evolution of Body Size (GES 325)

Preference to graduate students and upper-division undergraduates in GES and Biology. The influence of organism size on evolutionary and ecological patterns and processes. Focus is on integration of theoretical principles, observations of living organisms, and data from the fossil record. What are the physiological and ecological correlates of body size? Is there an optimum size? Do organisms tend to evolve to larger size? Does productivity control the size distribution of consumers? Does size affect the likelihood of extinction or speciation? How does size scale from the genome to the phenotype? How is metabolic rate involved in evolution of body size? What is the influence of geographic area on maximum body size?

BIO 342: Plant Biology Seminar

Topics announced at the beginning of each quarter. Current literature. May be repeated for credit. See http://carnegiedpb.stanford.edu/seminars/seminars.php.
Terms: Aut, Win, Spr | Units: 1-3 | Repeatable for credit

BIO 346: Advanced Seminar on Prokaryotic Molecular Biology

Enrollment limited to PhD students associated with departmental research groups in genetics or molecular biology.
Terms: Aut, Win | Units: 1

BIO 375: Field Ecology & Conservation

This course is based on question-driven research in the field, addressing both conceptual frameworks and methodological aspects of evolutionary ecology and conservation biology. It consists of faculty-led research projects and student independent projects. The field part takes place in a tropical rain forest research station in Mexico September 5-15, 2014. The field component is followed by sessions on campus, where the research data are analyzed, discussed and prepared as scientific papers. The training includes presentations of the papers in a mini-symposium organized as a professional meeting.
Terms: Aut | Units: 4
Instructors: Dirzo, R. (PI)

BIO 37N: Green Revolution and Plant Biotechnology

Feeding ever-growing populations is a constant challenge to mankind. In the second half of the 20th century, the breeding of improved varieties combined with the use of chemical fertilizers and pesticides led to crop yield increases labeled the Green Revolution. Modern technologies in genetic engineering are expected to bring the second green revolution. Meeting the current and future global food needs without further damaging the fragile environment requires innovative effort from scientists and the society.
| UG Reqs: GER: DB-NatSci

BIO 383: Seminar in Population Genetics

Literature review, research, and current problems in the theory and practice of population genetics and molecular evolution. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr | Units: 1-3 | Repeatable for credit
Instructors: Feldman, M. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints