2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 65 results for: EE

EE 21N: Making at the nanometer scale: A journey into microchips

Have you ever wondered what is inside your phone and your computer? What physical events happen in between the time you press the 'search' button and the information shows up on the screen? In this course, we start with the classic paper by Richard Feynman, "There's Plenty of Room at the Bottom," which laid down a challenge to the nanotechnologists. Today's microchips are nanotechnology in action. Transistors are nanometer scale. We will introduce students to the tools of nanotechnologists and the basic elements of nanoscale science and engineering such as nanotubes, nanowires, nanoparticles, and self-assembly. We will visit nanotechnology laboratories to consolidate our learning, go into the Stanford Nanofabrication Facility (SNF), and do a four-week project on nanofabrication. Hands-on laboratory work will be introduced (e.g., lithography, seeing things at the nanoscale using electron microscopes). We will learn how to build transistors from scratch and test them.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Wong, H. (PI)

EE 60N: Man versus Nature: Coping with Disasters Using Space Technology (GEOPHYS 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Zebker, H. (PI)

EE 64: Mechanical Prototyping for Electrical Engineers

This course will give non-mechanical engineers experience designing mechanical assemblies specifically for manufacture with readily accessible tools such as 3D printers and laser cutters. It will also teach students to debug their own mechanical designs, and interface them with other components (such as store bought parts). By the end of the quarter students will feel comfortable independently designing and manufacturing simple assemblies to solve issues in their projects, careers and daily lives. The course will meet in Lab64 (Room 134) on the first floor of Packard. Class website: ee64.stanford.edu
Terms: Win | Units: 3

EE 84N: From the Internet for People to the Internet of Things

Driven by the ubiquity of the Internet and advances in various technological fields, all aspects of the physical world in which we live are undergoing a major transformation. Underlying this transformation is a concept known as the Internet of Things (IoT) which envisions that every physical object in the world could be connected to the Internet. This concept is at the root of such developments as the fourth industrial revolution, precision agriculture, smart cities, intelligent transportation, home and building automation, precision medicine, etc. In this seminar, we trace back the origins of the IoT concept in terms of both the vision and pioneering work, identify the building blocks of an IoT system, and explore enabling technologies pertaining to the devices that get attached to things (possibly comprising sensors, actuators, and embedded systems) and the communications capabilities (RFID, Bluetooth, wireless sensor networks, Wi-Fi, Low Power WANs, cellular networks, vehicular communications). Students will apply the acquired knowledge to the design of IoT systems meeting specific objectives in various application domains.
Terms: Win | Units: 3
Instructors: Tobagi, F. (PI)

EE 101A: Circuits I

Introduction to circuit modeling and analysis. Topics include creating the models of typical components in electronic circuits and simplifying non-linear models for restricted ranges of operation (small signal model); and using network theory to solve linear and non-linear circuits under static and dynamic operations. Prerequisite: MATH 20 (or equivalent) is required, and ENGR 40M is strongly recommended.
Terms: Win, Sum | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

EE 102A: Signals and Systems I

Concepts and tools for continuous- and discrete-time signal and system analysis with applications in signal processing, communications, and control. Mathematical representation of signals and systems. Linearity and time invariance. System impulse and step responses. System frequency response. Frequency-domain representations: Fourier series and Fourier transforms. Filtering and signal distortion. Time/frequency sampling and interpolation. Continuous-discrete-time signal conversion and quantization. Discrete-time signal processing. Prerequisites: MATH 53 or CME 102. EE 102A may be taken concurrently with either course, provided students have proficiency in complex numbers.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

EE 108: Digital System Design

Digital circuit, logic, and system design. Digital representation of information. CMOS logic circuits. Combinational logic design. Logic building blocks, idioms, and structured design. Sequential logic design and timing analysis. Clocks and synchronization. Finite state machines. Microcode control. Digital system design. Control and datapath partitioning. Lab. *In Autumn, enrollment preference is given to EE majors. Any EE majors who must enroll in Autumn are invited to contact the instructor. Formerly EE 108A.
Terms: Aut, Win | Units: 5 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

EE 118: Introduction to Mechatronics (ME 210)

Technologies involved in mechatronics (intelligent electro-mechanical systems), and techniques to apply this technology to mecatronic system design. Topics include: electronics (A/D, D/A converters, op-amps, filters, power devices); software program design, event-driven programming; hardware and DC stepper motors, solenoids, and robust sensing. Large, open-ended team project. Prerequisites: ENGR 40, CS 106, or equivalents.
Terms: Win | Units: 4

EE 133: Analog Communications Design Laboratory (EE 233)

Design, testing, and applications of Radio Frequency (RF) electronics: Amplitude Modulation (AM), Frequency Modulation (FM) and concepts of Software Define Radio (SDR) systems. Practical aspects of circuit implementations are developed; labs involve building and characterization of subsystems as well as integration of a complete radio system and a final project. Total enrollment limited to 25 students, undergraduate and graduate levels. Prerequisite: EE101B. Undergraduate students enroll in EE133 for 4 units and Graduate students enroll in EE233 for 3 units. Recommended: EE114/214A.
Terms: Win | Units: 3-4

EE 134: Introduction to Photonics

Optics and photonics underpin the technologies that define our daily life, from communications and sensing to displays and imaging. This course provides an introduction to the principles that govern the generation, manipulation, and detection of light and will give students hands-on lab experience applying these principles to analyze and design working optical systems. The concepts we will cover form the basis for many systems in biology, optoelectronics, and telecommunications and build a foundation for further learning in photonics and optoelectronics. Connecting theory to observation and application is a major theme for the course. Prerequisite: EE 102A and one of the following: EE 42, Physics 43, or Physics 63.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints