2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

261 - 270 of 276 results for: ME

ME 399: Fuel Cell Seminar

Interdisciplinary research in engineering, chemistry, and physics. Talks on fundamentals of fuel cells by speakers from Stanford, other academic and research institutions, and industry. The potential to provide high efficiency and zero emissions energy conversion for transportation and electrical power generation.

ME 405: Asymptotic Methods in Computational Engineering

This course is not a standard teaching of asymptotic methods as thought in the applied math programs. Nor does it involve such elaborate algebra and analytical derivations. Instead, the class relies on students¿ numerical programing skills and introduces improvements on numerical methods using standard asymptotic and scaling ideas. The main objective of the course is to bring physical insight into numerical programming. Majority of the problems to be explored involve one-¬ and two-dimensional transient partial differential equations. Topics include: 1¿Review of numerical discretization and numerical stability, 2-Implicit versus explicit methods, 3-Introduction to regular and singular perturbation problems, 4¬¿Method of matched asymptotic expansions, 5¬¿Stationary thin interfaces: boundary layers, Debye layers,¿ 6¿Moving thin interfaces: shocks, phase-¬¿interfaces, 7-Reaction-¬diffusion problems, 8-Directional equilibrium and lubrication theory.

ME 408: Spectral Methods in Computational Physics (CME 322)

Data analysis, spectra and correlations, sampling theorem, nonperiodic data, and windowing; spectral methods for numerical solution of partial differential equations; accuracy and computational cost; fast Fourier transform, Galerkin, collocation, and Tau methods; spectral and pseudospectral methods based on Fourier series and eigenfunctions of singular Sturm-Liouville problems; Chebyshev, Legendre, and Laguerre representations; convergence of eigenfunction expansions; discontinuities and Gibbs phenomenon; aliasing errors and control; efficient implementation of spectral methods; spectral methods for complicated domains; time differencing and numerical stability.

ME 411: Advanced Topics in Computational Solid Mechanics

Discussion of the use of computational simulation methods for analyzing and optimizing production processes and for developing new products, based on real industrial applications in the metal forming industry. Brief review of linear and nonlinear continuum mechanics and the use of finite element methods to model solid mechanics problems, constitutive relations for metals, coupled thermo-elasto-plastic (viscoplastic) problems, modeling metal productions processes: bulk metal forming processes using rigid/viscoplastic material models, application examples: hot rolling of plates and the Mannesmann piercing processes and modeling the service behavior of steel pipes. Prerequisites: ME 338A, ME 335A,B,C, or consent of instructor.

ME 412: Engineering Functional Analysis and Finite Elements (CME 356)

Concepts in functional analysis to understand models and methods used in simulation and design. Topology, measure, and integration theory to introduce Sobolev spaces. Convergence analysis of finite elements for the generalized Poisson problem. Extensions to convection-diffusion-reaction equations and elasticity. Upwinding. Mixed methods and LBB conditions. Analysis of nonlinear and evolution problems. Prerequisites: 335A,B, CME 200, CME 204, or consent of instructor. Recommended: 333, MATH 171.

ME 413: Quantum Confinement Structures: Physics and Fabrication

Quantum mechanics principles and the thermodynamics of confinement structures. Focus is on potential applications such as solar cells and catalysis. Student presentations. Lab demonstrations. Prerequisite: background in quantum mechanics and statistical thermodynamics.

ME 429: COMMERCIAL MEMS DESIGN

This course, taught by Dr. Gary O'Brien of the Bosch RTC, will provide insight into the issues and challenges in designing MEMS device for commercial and automotive applications. Topics to be covered in the class will include device simulation and design, design of experiments, compensation for cross-wafer and wafer-to-wafer fabrication variations, design for extreme environments, analysis and management of reliability issues including package stress, shock, drift, cost analysis of manufacturing processes, and some discussion of the unique challenges for consumer and automotive customers and markets. Student teams will develop a device design, fabrication process, and manufacturing analysis in response to a specification.

ME 440: Electronic States and Transitions In Quantum Confined Structures

Summary of selected quantum mechanical concepts with focus on phenomena related to charge separation and transfer. The physics and thermodynamics of excitons described and related to experimental observations. The energy state of electrons as function of confinement size and strength. Presentations include on electron tunneling, measuring the density of electronic states, dielectric behavior of materials, Bose Einstein condensation of quasi particles, and excitons in quantum wells and dots.

ME 450: Advances in Biotechnology

Guest academic and industrial speakers. Latest developments in fields such as bioenergy, green process technology, production of industrial chemicals from renewable resources, protein pharmaceutical production, industrial enzyme production, stem cell applications, medical diagnostics, and medical imaging. Biotechnology ethics, business and patenting issues, and entrepreneurship in biotechnology.

ME 451B: Advanced Fluid Mechanics

Waves in fluids: surface waves, internal waves, inertial and acoustic waves, dispersion and group velocity, wave trains, transport due to waves, propagation in slowly varying medium, wave steepening, solitons and solitary waves, shock waves. Instability of fluid motion: dynamical systems, bifurcations, Kelvin-Helmholtz instability, Rayleigh-Benard convection, energy method, global stability, linear stability of parallel flows, necessary and sufficient conditions for stability, viscosity as a destabilizing factor, convective and absolute instability. Focus is on flow instabilities. Prerequisites: graduate courses in compressible and viscous flow.
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints