2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 61 results for: EE

EE 21N: What is Nanotechnology?

Nanotechnology is an often used word and it means many things to different people. Scientists and Engineers have some notion of what nanotechnology is, societal perception may be entirely different. In this course, we start with the classic paper by Richard Feynman ("There's Plenty of Room at the Bottom"), which laid down the challenge to the nanotechnologists. Then we discuss two classic books that offer a glimpse of what nanotechnology is: Engines of Creation: The Coming Era of Nanotechnology by Eric Drexler, and Prey by Michael Crichton. Drexler's thesis sparked the imagination of what nano machinery might do, whereas Crichton's popular novel channeled the public's attention to this subject by portraying a disastrous scenario of a technology gone astray. We will use the scientific knowledge to analyze the assumptions and predictions of these classic works. We will draw upon the latest research advances to illustrate the possibilities and impossibilities of nanotechnology.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Wong, H. (PI)

EE 22N: Medical Imaging Systems

Preference to freshmen. The technology of major imaging modalities used for disease diagnosis: x-ray, ultrasound, and magnetic resonance; their history, societal impact, and clinical applications. Field trips to a medical center and an imaging research lab. Term paper and presentation. Prerequisites: high school physics and calculus.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci

EE 27N: Electronics Rocks

Electronics pervades our lives, yet we often feel obliged to let a device function as it was intended. This course is about not being intimidated by voiding a warranty and modding some commercial gadget and about being confident enough to build something cool from scratch. To get there, we will study the basics of "how things work" and learn how to hack/mod and scratch build. Students will be mentored and encouraged to work, in teams, to play with interesting electronics and ultimately to develop a creative final project.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Kovacs, G. (PI)

EE 41: Physics of Electrical Engineering (ENGR 40P)

How everything from electrostatics to quantum mechanics is used in common high-technology products. Electrostatics are critical in micro-mechanical systems used in many sensors and displays, and Electromagnetic waves are essential in all high-speed communication systems. How to propagate energy on transmission lines, optical fibers,and in free space. Which aspects of modern physics are needed to generate light for the operation of a DVD player or TV. Introduction to semiconductors, solid-state light bulbs, and laser pointers. Hands-on labs to connect physics to everyday experience. Prerequisites: Physics 43
Terms: Win | Units: 5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR, WAY-SMA
Instructors: Solgaard, O. (PI)

EE 92A: Making and Breaking Things

This course will feature weekly visiting speakers who will guide class members through the hands-on process of assembling or dissection novel interactive devices and products. The course is meant to provide students hands-on experience with component sensing and computing technolo-gies, a working knowledge of different materials and methods used in modern-day prototyping and manufacture, and exposure to people en-gaged in designing novel devices within the field of interactive device de-sign. Activities will features a wide and evolving range of domains such as texile sensors, hacking wireless radio, making LED light sculptures, taking apart toys, shape deposition modeling and more.
Terms: Win | Units: 1

EE 100A: Circuits and Signals Applications

This seminar course is intended to provide students with practical examples of electronic circuits and related signal processing that can augment and motivate the related courses such as: CME 102, EE 101A and EE 102A. Any or all of these courses can be taken concurrently. The empha-sis will be on the frequency- and time-domain behavior of circuits. The speakers will demon-strate system-level, application-driven motivation for the circuits and associated signal pro-cessing that will be discussed. The detailed discussion will focus on examples of the first-order models and analysis that in turn relates to the courses mentioned above.
Terms: Win | Units: 1
Instructors: Dutton, R. (PI)

EE 101A: Circuits I

First of two-course sequence. Introduction to circuit modeling and analysis. Topics include creating the models of typical components in electronic circuits and simplifying non-linear models for restricted ranges of operation (small signal model); and using network theory to solve linear and non-linear circuits under static and dynamic operations. Prerequisite: Physics 43
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Wong, S. (PI)

EE 102A: Signal Processing and Linear Systems I

Concepts and tools for continuous- and discrete-time signal and system analysis with applications in signal processing, communications, and control. Mathematical representation of signals and systems. Linearity and time invariance. System impulse and step responses. System frequency response. Frequency-domain representations: Fourier series and Fourier transforms. Filtering and signal distortion. Time/frequency sampling and interpolation. Continuous-discrete-time signal conversion and quantization. Discrete-time signal processing. Prerequisite: MATH 53 or ENGR 155A.
Terms: Win, Sum | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

EE 108A: Digital Systems I

Digital circuit, logic, and system design. Digital representation of information. CMOS logic circuits. Combinational logic design. Logic building blocks, idioms, and structured design. Sequential logic design and timing analysis. Clocks and synchronization. Finite state machines. Microcode control. Digital system design. Control and datapath partitioning. Lab. Undergraduates must enroll for 4 units. *In Autumn, enrollment preference is given to EE majors.
Terms: Aut, Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Instructors: Mitra, S. (PI)

EE 108B: Digital Systems II

The design of processor-based digital systems. Instruction sets, addressing modes, data types. Assembly language programming, low-level data structures, introduction to operating systems and compilers. Processor microarchitecture, microprogramming, pipelining. Memory systems and caches. Input/output, interrupts, buses and DMA. System design implementation alternatives, software/hardware tradeoffs. Labs involve the design of processor subsystems and processor-based embedded systems. Prerequisite: 108A, CS 106B.
Terms: Aut, Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints