2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

131 - 140 of 195 results for: ME

ME 352D: Nanoscale heat, mass and charge transport

Fundamentals of heat, mass and charge transport in solids, liquids and gases. Emphasis on the origins of the properties of matter. Translation of scientific understanding to design and predict the behavior of novel engineering devices and systems that span semiconductors, biotechnology, energy and the environment.
Last offered: Spring 2021

ME 354: Experimental Methods in Fluid Mechanics

Experimental methods associated with the interfacing of laboratory instruments, experimental control, sampling strategies, data analysis, and introductory image processing. Instrumentation including point-wise anemometers and particle image tracking systems. Lab. Prerequisites: previous experience with computer programming and consent of instructor. Limited enrollment.
Terms: Spr | Units: 3

ME 355: Compressible Flow

Topics include quasi-one-dimensional isentropic flow in variable area ducts, normal shock waves, oblique shock and expansion waves, flow in ducts with friction and heat transfer, unsteady one-dimensional flow, and steady two-dimensional supersonic flow.
Last offered: Spring 2023

ME 356: Hypersonic Aerothermodynamics

History of hypersonic flight technology. Inviscid hypersonic flows. Rankine-Hugoniot shock-jump relations at high Mach numbers. Newtonian approximation. Small-disturbance equations for hypersonic aerodynamics. Mach-number independence. Hypersonic similarity. Hypersonic boundary layers and viscous interactions. Aerodynamic heating. Self-similar solutions and analogies. Shock-shock interactions and shock-interference heating. Reentry aerothermodynamics. Effects of the entropy layer. Ablation shields. Thermodynamic and chemical nonequilibrium effects in hypersonics. Transition in hypersonic boundary layers. Effects of incident shock waves. Modern computational developments in hypersonics. Engineering applications of hypersonics in aeronautics and astronautics.
Last offered: Spring 2021

ME 357: Gas-Turbine Design Analysis (ME 257)

This course is concerned with the design analysis of gas-turbine engines. After reviewing essential concepts of thermo- and aerodynamics, we consider a turbofan gas-turbine engine that is representative of a business aircraft. We will first conduct a performance analysis to match the engine design with aircraft performance requirements. This is followed by examining individual engine components, including compressor, combustor, turbines, and nozzles, thereby increase the level of physical description. Aspects of modern engine concepts, environmental impacts, and advanced engine-analysis methods will be discussed. Students will have the opportunity to develop a simulation code to perform a basic design analysis of a turbofan engine. Course Prerequisites: ENGR 30, ME 70, ME 131B, CME 100
Terms: Spr | Units: 3

ME 361: Turbulence

The nature of turbulent flows, statistical and spectral description of turbulence, coherent structures, spatial and temporal scales of turbulent flows. Averaging, two-point correlations and governing equations. Reynolds averaged equations and stresses. Free shear flows, turbulent jet, turbulent kinetic energy and kinetic energy dissipation, and kinetic energy budget. Kolmogorov's hypothesis and energy spectrum. Wall bounded flows, viscous scales, and law of the wall. Turbulence closure modeling for Reynolds averaged Navier Stokes equations. Direct and large eddy simulation of turbulent flows. Subgrid scale modeling. ME300B recommended.
Terms: Spr | Units: 3

ME 362A: Physical Gas Dynamics

Concepts and techniques for description of high-temperature and chemically reacting gases from a molecular point of view. Introductory kinetic theory, chemical thermodynamics, and statistical mechanics as applied to properties of gases and gas mixtures. Transport and thermodynamic properties, law of mass action, and equilibrium chemical composition. Maxwellian and Boltzmann distributions of velocity and molecular energy. Examples and applications from areas of current interest such as combustion and materials processing.
Terms: Aut | Units: 3

ME 362B: Nonequilibrium Processes in High-Temperature Gases

Chemical kinetics and energy transfer in high-temperature gases. Collision theory, transition state theory, and unimolecular reaction theory. Prerequisie: 362A or consent of instructor.
Last offered: Winter 2023

ME 362C: Rarefied and Ionized Gases (AA 205)

Compressible, viscous, rarefied, and ionized gas flow models derived from kinetic theory, quantum mechanics, and statistical mechanics. Equilibrium properties and non-equilibrium processes via collisions and radiation. Monte Carlo collision models for non-equilibrium gas dynamics and partially ionized plasmas. Prerequisite: undergraduate courses in fluid mechanics and thermodynamics, ME 362A recommended but not required.
Last offered: Winter 2021

ME 363: Partially Ionized Plasmas and Gas Discharges

Introduction to partially ionized gases and the nature of gas discharges. Topics: the fundamentals of plasma physics emphasizing collisional and radiative processes, electron and ion transport, ohmic dissipation, oscillations and waves, interaction of electromagnetic waves with plasmas. Applications: plasma diagnostics, plasma propulsion and materials processing. Prerequisite: 362A or consent of instructor.
Last offered: Spring 2021
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints