2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
 Browseby subject... Scheduleview...

# 91 - 100 of 161 results for: MATH

## MATH 224:Topics in Mathematical Biology

Mathematical models for biological processes based on ordinary and partial differential equations. Topics: population and infectious diseases dynamics, biological oscillators, reaction diffusion models, biological waves, and pattern formation. Prerequisites: 53 and 131, or equivalents.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

## MATH 226:Numerical Solution of Partial Differential Equations (CME 306)

Hyperbolic partial differential equations: stability, convergence and qualitative properties; nonlinear hyperbolic equations and systems; combined solution methods from elliptic, parabolic, and hyperbolic problems. Examples include: Burger's equation, Euler equations for compressible flow, Navier-Stokes equations for incompressible flow. Prerequisites: MATH 220A or CME 302.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Ying, L. (PI)

## MATH 227:Partial Differential Equations and Diffusion Processes

Parabolic and elliptic partial differential equations and their relation to diffusion processes. First order equations and optimal control. Emphasis is on applications to mathematical finance. Prerequisites: MATH 131 and MATH 136/ STATS 219, or equivalents.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

## MATH 230B:Theory of Probability (STATS 310B)

Conditional expectations, discrete time martingales, stopping times, uniform integrability, applications to 0-1 laws, Radon-Nikodym Theorem, ruin problems, etc. Other topics as time allows selected from (i) local limit theorems, (ii) renewal theory, (iii) discrete time Markov chains, (iv) random walk theory,nn(v) ergodic theory. Prerequisite: 310A or MATH 230A.
Terms: Win | Units: 2-3 | Grading: Letter or Credit/No Credit

## MATH 230C:Theory of Probability (STATS 310C)

Continuous time stochastic processes: martingales, Brownian motion, stationary independent increments, Markov jump processes and Gaussian processes. Invariance principle, random walks, LIL and functional CLT. Markov and strong Markov property. Infinitely divisible laws. Some ergodic theory. Prerequisite: 310B or MATH 230B.
Terms: Spr | Units: 2-4 | Grading: Letter or Credit/No Credit

## MATH 231A:An Introduction to Random Matrix Theory (STATS 351A)

Patterns in the eigenvalue distribution of typical large matrices, which also show up in physics (energy distribution in scattering experiments), combinatorics (length of longest increasing subsequence), first passage percolation and number theory (zeros of the zeta function). Classical compact ensembles (random orthogonal matrices). The tools of determinental point processes.
Terms: not given this year | Units: 3 | Grading: Letter (ABCD/NP)

## MATH 231C:Free Probability

Background from operator theory, addition and multiplication theorems for operators, spectral properties of infinite-dimensional operators, the free additive and multiplicative convolutions of probability measures and their classical counterparts, asymptotic freeness of large random matrices, and free entropy and free dimension. Prerequisite: STATS 310B or equivalent.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

## MATH 232:Topics in Probability: Percolation Theory

An introduction to some of the most important theorems and open problems in percolation theory. Topics include some of the difficult early breakthroughs of Kesten, Menshikov, Aizenman and others, and recent fields-medal winning works of Schramm, Lawler, Werner and Smirnov. Prerequisites: graduate-level probability.
Terms: not given this year | Units: 3 | Repeatable for credit | Grading: Letter or Credit/No Credit

## MATH 233:Probabilistic Methods in Analysis

Proofs and constructions in analysis obtained from basic results in Probability Theory and a 'probabilistic way of thinking.' Topics: Rademacher functions, Gaussian processes, entropy.
Terms: not given this year | Units: 3 | Repeatable for credit | Grading: Letter or Credit/No Credit

## MATH 234:Large Deviations Theory (STATS 374)

Combinatorial estimates and the method of types. Large deviation probabilities for partial sums and for empirical distributions, Cramer's and Sanov's theorems and their Markov extensions. Applications in statistics, information theory, and statistical mechanics. Prerequisite: MATH 230A or STATS 310.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
 Autumn Winter Spring Summer
updating results...
number of units
 1 unit 2 units 3 units 4 units 5 units >5 units
updating results...
time offered
 early morning (before 10am) morning (10am-12pm) lunchtime (12pm-2pm) afternoon (2pm-5pm) evening (after 5pm)
updating results...
days
 Monday Tuesday Wednesday Thursday Friday Saturday Sunday
updating results...
UG Requirements (GERs)
 WAY-A-II WAY-AQR WAY-CE WAY-ED WAY-ER WAY-FR WAY-SI WAY-SMA Language Writing 1 Writing 2 Writing SLE DB:Hum DB:Math DB:SocSci DB:EngrAppSci DB:NatSci EC:EthicReas EC:GlobalCom EC:AmerCul EC:Gender IHUM1 IHUM2 IHUM3
updating results...
component
 Lecture (LEC) Seminar (SEM) Discussion Section (DIS) Laboratory (LAB) Lab Section (LBS) Activity (ACT) Case Study (CAS) Colloquium (COL) Workshop (WKS) Independent Study (INS) Intro Dial, Sophomore (IDS) Intro Sem, Freshman (ISF) Intro Sem, Sophomore (ISS) Internship (ITR) Arts Intensive Program (API) Language (LNG) Practicum (PRA) Practicum (PRC) Research (RES) Sophomore College (SCS) Thesis/Dissertation (T/D)
updating results...
career