2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 6 of 6 results for: BIOHOPK ; Currently searching autumn courses. You can expand your search to include all quarters

BIOHOPK 198H: Directed Instruction or Reading

May be taken as a prelude to research and may also involve participation in a lab or research group seminar and/or library research. Credit for work arranged with out-of-department instructors restricted to Biology majors and requires department approval. May be repeated for credit. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Letter or Credit/No Credit

BIOHOPK 199H: Undergraduate Research

Qualified undergraduates undertake individual work in the fields listed under 300H. Arrangements must be made by consultation or correspondence.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Letter or Credit/No Credit

BIOHOPK 276H: Estimates and Errors: The Theory of Scientific Measurement

Measurement plays a fundamental role in science, but many biologists have no formal training in what it means to measure something. Errors are inevitable in any measurement. Which are inherent, and which can be controlled? How do errors propagate? How can you decide which data to reject? When are uncertainties normal? In this course we will work our way into the theory of measurement, covering some topics that overlap with inferential statistics (but from a new and perhaps more intuitive perspective), and extending beyond those basics to include spectral analysis and the dangers of measurement in the digital realm.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

BIOHOPK 300H: Research

Graduate study involving original work undertaken with staff in the fields indicated. B. Block: Comparative Vertebrate Physiology (biomechanics, metabolic physiology and phylogeny of pelagic fishes, evolution of endothermy); L. Crowder: Marine ecology, fisheries, bycatch, integrating science and policy, marine conservation; G. De Leo: Population dynamics and management, wildlife diseases, environmental policies and sustainable development; M. Denny: Biomechanics (the mechanical properties of biological materials and their consequences for animal size, shape, and performance); W. Gilly: Neurobiology (analysis of giant axon systems in marine invertebrates from molecular to behavioral levels); J. Goldbogen: Physiological and Behavioral Ecology (functional morphology and biomechanics of marine organisms): C. Lowe: Evolution of Development (origin of chordates, early evolution of body plans); F. Micheli: Marine Ecology (species interactions and community ecology, scale-dependent aspects of community organization, marine conservation and design of multi-species marine protected areas, behavioral ecology); S. Palumbi: Molecular Evolution (mechanisms of speciation, genetic differentiations of populations, use of molecular tools in conservation biology, design of marine protected areas); S. Thompson: Neurobiology (neuronal control of behavior and mechanisms of ion permeation, signal transduction, calcium homeostasis, and neutrotransmission); J. Watanabe: Marine Ecology (kelp forest ecology and invertebrate zoology).
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Letter or Credit/No Credit

BIOHOPK 801H: TGR Project

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit | Grading: TGR

BIOHOPK 802H: TGR Dissertation

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit | Grading: TGR
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints