2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 34 results for: GEOPHYS

GEOPHYS 20N: How to Predict a Super Eruption

The physics and chemistry of volcanic processes and modern methods of volcano monitoring. Volcanoes as manifestations of the Earth's internal energy and hazards to society. How earth scientists better forecast eruptive activity by monitoring seismic activity, bulging of the ground surface, and the discharge of volcanic gases, and by studying deposits from past eruptions. Focus is on the interface between scientists and policy makers and the challenges of decision making with incomplete information. Field trip to Mt. St. Helens, site of the 1980 eruption.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA
Instructors: Segall, P. (PI)

GEOPHYS 60N: Man versus Nature: Coping with Disasters Using Space Technology (EE 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Zebker, H. (PI)

GEOPHYS 110: Introduction to the Foundations of Contemporary Geophysics (EARTHSYS 110, GEOPHYS 215)

Introduction to the foundations of contemporary geophysics. Lectures link important topics in contemporary Geophysics ("What we study") to methods used to make progress on these topics ("How we study"). Topics range from plate tectonics to natural hazards; ice sheets to sustainability. For each topic, we focus is on how the interpretation of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetism and remote sensing) provides fundamental insight into the behavior of the Earth. The course will includes a required all-day Saturday field exercise Feb 02/10 (rain-date: 02/17). Prerequisite: CME 100 or MATH 51, or co-registration in either.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 115: Taking the Pulse of the Planet (EE 115)

Grappling with the big questions of sustainability and climate change, requires that we have ways to measure ? as we cannot manage what we cannot measure. This course, Taking the Pulse of the Planet introduces a new research and teaching initiative at Stanford ? also called Taking the Pulse of the Planet, which has the following goal: to have in place a global network of satellite, airborne, land/water-based sensors to support the real-time adaptive management of planetary health and human activities. Measurements will be made at the spatial and temporal scales required to inform the development and implementation of new policies addressing critical issues related to climate change, sustainability, and equity. Tapping into rapid advancements in sensor technology and data science over the past decade, we can now image and monitor many components of the Earth system and human activities. With the launch of the Stanford Doerr School of Sustainability, we wish to celebrate, through this co more »
Grappling with the big questions of sustainability and climate change, requires that we have ways to measure ? as we cannot manage what we cannot measure. This course, Taking the Pulse of the Planet introduces a new research and teaching initiative at Stanford ? also called Taking the Pulse of the Planet, which has the following goal: to have in place a global network of satellite, airborne, land/water-based sensors to support the real-time adaptive management of planetary health and human activities. Measurements will be made at the spatial and temporal scales required to inform the development and implementation of new policies addressing critical issues related to climate change, sustainability, and equity. Tapping into rapid advancements in sensor technology and data science over the past decade, we can now image and monitor many components of the Earth system and human activities. With the launch of the Stanford Doerr School of Sustainability, we wish to celebrate, through this course, the powerful role that advancements in technology ? specifically sensors ? and advancements in data science are playing in addressing the global challenges in sustainability and climate change. This will be a lecture class for undergraduates and graduate students designed to introduce them to the incredible array of sensors and data sets now available. We will finish the quarter with group projects that will involve the making and deployment of sensors around campus. The course will be designed to accommodate students at any level, with any background, with no required pre-requisites. In most of the assignments, we will be using Google co-lab to work with various types of sensor data. We anticipate drawing to this course both data-science-savvy and data-science-interested students. Therefore, we have developed online modules that are designed to help any student get up to speed on the "jargon" and the computational approaches used in the class.
Terms: Win | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA

GEOPHYS 120: Geophysical Mechanics and Dynamics (GEOPHYS 220)

Introductory application of continuum mechanics to ice sheets and glaciers, water waves and tsunamis, and volcanoes. Emphasis on physical processes and mathematical description using balance of mass and momentum, combined with constitutive equations for fluids and solids. Designed for undergraduates with no prior geophysics background; also appropriate for beginning graduate students. Prerequisites: CME 100 or MATH 52 and PHYSICS 41 (or equivalent).
Terms: Win | Units: 3-5 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

GEOPHYS 126: Planetary Science Reading (EPS 127, EPS 227, GEOPHYS 226)

(Formerly GEOLSCI 127 and 227) Planets and stars form together, from collapsed cores in interstellar molecular clouds. This is a very active area of research, and the book Protostars and Planets VII (2023) consists of up-to-date review chapters covering various aspects of the field. This seminar will cover the portions of the book focusing on planet formation and exoplanets. It will meet once per week to discuss an individual chapter, with students expected to come to class with questions about each week's reading assignment. There are no prerequisites for this course, but students should have some facility with reading scientific literature. Change of Department Name: Earth and Planetary Science (Formerly Geologic Sciences).
Terms: Win | Units: 1 | Repeatable 3 times (up to 3 units total)
Instructors: Schaefer, L. (PI)

GEOPHYS 128: Modeling Earth (GEOPHYS 228)

Most problems in Earth Science are dazzling and beautifully complex. Abstracting from this natural complexity to identify the essential components and mechanisms of a natural system is perhaps the most important, but commonly overlooked, task for developing testable mathematical models for Earth and Environmental Science. This course focuses on conceptual model development, rather than addressing the variety of formal mathematical techniques available for the analytical analysis or numerical simulation of a model. Recommended Prerequisites: CME 100 or MATH 51 (or equivalent)
Terms: Win | Units: 3-4

GEOPHYS 188: Basic Earth Imaging (GEOPHYS 210)

Echo seismogram recording geometry, head waves, moveout, velocity estimation, making images of complex shaped reflectors, migration by Fourier and integral methods. Anti-aliasing. Dip moveout. Computer labs. See http://sep.stanford.edu/sep/prof/. Offered every year, autumn quarter. *The Geophys180 cross-listing is considered an advanced undergraduate course.
Terms: Win | Units: 2-3

GEOPHYS 196: Undergraduate Research in Geophysics

Field-, lab-, or computer-based. Faculty supervision. Written reports.
Terms: Aut, Win, Spr | Units: 1-10 | Repeatable for credit

GEOPHYS 197: Senior Thesis in Geophysics

For seniors writing a thesis based on Geophysics research in 196 or as a summer research fellow. Seniors defend the results of their research at a public oral presentation.
Terms: Aut, Win, Spr | Units: 3-5
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints