2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 28 results for: CME

CME 100: Vector Calculus for Engineers (ENGR 154)

Computation and visualization using MATLAB. Differential vector calculus: analytic geometry in space, functions of several variables, partial derivatives, gradient, unconstrained maxima and minima, Lagrange multipliers. Integral vector calculus: multiple integrals in Cartesian, cylindrical, and spherical coordinates, line integrals, scalar potential, surface integrals, Green's, divergence, and Stokes' theorems. Examples and applications drawn from various engineering fields. Prerequisites: MATH 41 and 42, or 10 units AP credit.
Terms: Aut, Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

CME 100A: Vector Calculus for Engineers, ACE

Students attend CME100/ENGR154 lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Enrollment by department permission only. Prerequisite: application at: http://soe.stanford.edu/current_students/edp/programs/ace.html
Terms: Aut, Spr | Units: 6 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

CME 206: Introduction to Numerical Methods for Engineering (AA 214A, ME 300C)

Numerical methods from a user's point of view. Lagrange interpolation, splines. Integration: trapezoid, Romberg, Gauss, adaptive quadrature; numerical solution of ordinary differential equations: explicit and implicit methods, multistep methods, Runge-Kutta and predictor-corrector methods, boundary value problems, eigenvalue problems; systems of differential equations, stiffness. Emphasis is on analysis of numerical methods for accuracy, stability, and convergence. Introduction to numerical solutions of partial differential equations; Von Neumann stability analysis; alternating direction implicit methods and nonlinear equations. Prerequisites: CME 200/ ME 300A, CME 204/ ME 300B.
Terms: Aut, Spr | Units: 3 | Grading: Letter or Credit/No Credit

CME 214: Software Design in Modern Fortran for Scientists and Engineers (EARTHSCI 214)

This course introduces software design and development in modern Fortran. Course covers the functional, object-oriented-, and parallel programming features introduced in the Fortran 95, 2003, and 2008 standards, respectively, in the context of numerical approximations to ordinary and partial differential equations; introduces object-oriented design and design schematics based on the Unified Modeling Language (UML) structure, behavior, and interaction diagrams; cover the basic use of several open-source tools for software building, testing, documentation generation, and revision control. Recommended: Familiarity with programming in Fortran 90, basic numerical analysis and linear algebra, or instructor approval
Terms: Aut | Units: 3 | Grading: Letter (ABCD/NP)

CME 302: Numerical Linear Algebra

First in a three quarter graduate sequence. Solution of systems of linear equations: direct methods, error analysis, structured matrices; iterative methods and least squares. Parallel techniques. Prerequisites: CME 108, MATH 103 or 113.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Darve, E. (PI)

CME 400: Ph.D. Research

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit

CME 192: Introduction to MATLAB

This short course runs for the first four weeks of the quarter and is offered each quarter during the academic year. It is highly recommended for students with no prior programming experience who are expected to use MATLAB in math, science, or engineering courses. It will consist of interactive lectures and application-based assignments.nThe goal of the short course is to make students fluent in MATLAB and to provide familiarity with its wide array of features. The course covers an introduction of basic programming concepts, data structures, and control/flow; and an introduction to scientific computing in MATLAB, scripts, functions, visualization, simulation, efficient algorithm implementation, toolboxes, and more.
Terms: Aut, Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CME 193: Introduction to Scientific Python

This short course runs for the first four weeks of the quarter and is offered each quarter during the academic year. It is recommended for students who want to use Python in math, science, or engineering courses and for students who want to learn the basics of Python programming. The goal of the short course is to familiarize students with Python¿s tools for scientific computing. Lectures will be interactive with a focus on learning by example, and assignments will be application-driven. No prior programming experience is needed.nTopics covered include control flow, basic data structures, File I/O, and an introduction to NumPy/SciPy.
Terms: Aut, Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CME 195: Introduction to R (STATS 195)

This short course runs for the first four weeks of the quarter and is offered in the fall. It is recommended for students who want to use R in statistics, science, or engineering courses and for students who want to learn the basics of R programming. The goal of the short course is to familiarize students with R's tools for scientific computing. Lectures will be interactive with a focus on learning by example, and assignments will be application-driven. No prior programming experience is needed. Topics covered include basic data structures, File I/O, graphs, control structures, etc, and some useful packages in R.
Terms: Aut | Units: 1 | Grading: Satisfactory/No Credit

CME 200: Linear Algebra with Application to Engineering Computations (ME 300A)

Computer based solution of systems of algebraic equations obtained from engineering problems and eigen-system analysis, Gaussian elimination, effect of round-off error, operation counts, banded matrices arising from discretization of differential equations, ill-conditioned matrices, matrix theory, least square solution of unsolvable systems, solution of non-linear algebraic equations, eigenvalues and eigenvectors, similar matrices, unitary and Hermitian matrices, positive definiteness, Cayley-Hamilton theory and function of a matrix and iterative methods. Prerequisite: familiarity with computer programming, and MATH51.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints