2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 21 results for: BIOHOPK

BIOHOPK 155H: Developmental Biology and Evolution (BIOHOPK 255H)

(Graduate students register for 255) This course focusses on how animals form their basic body plans; from the formation of their germ layers; ectoderm, endoderm and mesoderm, to how they are organized along the main developmental axes; the anteroposterior and dorsoventral axes. The course will focus in part on the molecular mechanisms that underlie these developmental decisions from work carried out in established developmental model species. However, we will also explore the current understanding of how these mechanisms evolved from new insights from emerging models representing a broad range of animal phyla. The setting at Hopkins Marine Station will allow us to carry out experiments from animals collected in the field, and the course will involve a substantial lab component to complement concepts and approaches presented in lecture. nPre-requisites : Biocore or by permission of instructor
Terms: Win | Units: 4 | UG Reqs: WAY-SMA
Instructors: Lowe, C. (PI)

BIOHOPK 161H: Invertebrate Zoology (BIOHOPK 261H)

(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips. Satisfies Central Menu Area 3 for Bio majors. Prerequisite: Biology core or consent of instructor.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Watanabe, J. (PI)

BIOHOPK 163H: Oceanic Biology (BIOHOPK 263H)

(Graduate students register for 263H.) How the physics and chemistry of the oceanic environment affect marine plants and animals. Topics: seawater and ocean circulation, separation of light and nutrients in the two-layered ocean, oceanic food webs and trophic interactions, oceanic environments, biogeography, and global change. Lectures, discussion, and field trips. Satisfies Central Menu Area 4 for Bio majors. Recommended: PHYSICS 21 or 51, CHEM 31, Biology core, or consent of instructor.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIOHOPK 172H: Marine Ecology: From Organisms to Ecosystems (BIOHOPK 272H)

(Graduate students register for 272H.) This course incorporates the approaches of experimental ecology, biomechanics (ecomechanics), and physiology to develop an integrated perspective on the factors that govern the structures of marine ecosystems and how environment change, including anthropogenic influences, affects ecosystems' species composition and health. Focus is on rocky intertidal, kelp forest, estuarine, and midwater ecosystems of Monterey Bay. Experimental projects done in the field offer experience in a variety of ecological techniques and in analysis of ecological data. Students will engage in presentation and debates of current topics in marine ecology and conservation. Satisfies Central Menu Area 4 for Bio majors. Prerequisite: Biology core or consent of instructor. Fulfills WIM in Biology.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Micheli, F. (PI)

BIOHOPK 174H: Experimental Design and Probability (BIOHOPK 274H)

(Graduate students register for 274H.) Variability is an integral part of biology. Introduction to probability and its use in designing experiments to address biological problems. Focus is on analysis of variance, when and how to use it, why it works, and how to interpret the results. Design of complex, but practical, asymmetrical experiments and environmental impact studies, and regression and analysis of covariance. Computer-based data analysis. Prerequisite: Biology core or consent of instructor.
Terms: Win, Spr | Units: 3 | UG Reqs: GER: DB-NatSci, GER:DB-Math, WAY-FR, WAY-AQR
Instructors: Watanabe, J. (PI)

BIOHOPK 177H: Dynamics and Management of Marine Populations (BIOHOPK 277H)

(Graduate students register for 277H.) Course examines the ecological factors and processes that control natural and harvested marine populations. Course emphasizes mathematical models as tools to assess the dynamics of populations and to derive projections of their demographic fate under different management scenarios. Course objectives will be met by a combination of theoretical lectures, assigned readings and class discussions, case study analysis and interactive computer sessions.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-FR | Repeatable 2 times (up to 8 units total)
Instructors: De Leo, G. (PI)

BIOHOPK 187H: Sensory Ecology (BIOHOPK 287H)

(Graduate students register for 287H.) Topics: the ways animals receive, filter, and process information gleaned from the environment, sensory receptor mechanisms, neural processing, specialization to life underwater, communication within and between species, importance of behavior to ecosystem structure and dynamics, impact of acoustic and light pollution on marine animals. Emphasis is on the current scientific literature.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA
Instructors: Thompson, S. (PI)

BIOHOPK 198H: Directed Instruction or Reading

May be taken as a prelude to research and may also involve participation in a lab or research group seminar and/or library research. Credit for work arranged with out-of-department instructors restricted to Biology majors and requires department approval. May be repeated for credit. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

BIOHOPK 199H: Undergraduate Research

Qualified undergraduates undertake individual work in the fields listed under 300H. Arrangements must be made by consultation or correspondence.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints