2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

101 - 110 of 298 results for: ME

ME 231: Educating Young STEM Thinkers (EDUC 139, EDUC 239, ME 139)

The course introduces students to the design thinking process, the national conversations about the future of STEM careers, and opportunities to work with middle school students and K-12 teachers in STEM-based after-school activities and intercession camps. The course is both theory and practice focused. The purpose is twofold; to provide reflection and mentoring opportunities for students to learn about pathways to STEM careers and to introduce mentoring opportunities with young STEM thinkers.
Last offered: Spring 2016 | Repeatable 4 times (up to 20 units total)

ME 232: Additive Manufacturing- From Fundamentals to Applications

Additive manufacturing (AM) is an emerging technique for direct conversion of 3D computer aided designs into physical objects using a variety of approaches. AM technologies are simple and flexible processes that allow for the creation of very complex and customizable 3D objects in just a few process steps. This lecture gives an overview of available processes and current research in additive manufacturing. Students will get to know how AM can change the way we prototype and manufacture products in the future.
Terms: Sum | Units: 3

ME 234: Introduction to Neuromechanics

Understanding the role of mechanics in brain development, physiology, and pathology. Mechanics of brain cells: neurons, mechanobiology, mechanotransduction. Mechanics of brain tissue: experimental testing, constitutive modeling, computational modeling. Mechanics of brain development: gyrification, cortical folding, axon elongation, lissencephaly, polymicrogyria. Mechanics of traumatic brain injury: high impact loading, neural injury. Mechanics of brain tumors, brain cancer, tumor growth, altered cytoskeletal mechanics. Mechanics of neurological disorders: autism, dementia, schizophrenia. Mechanics of brain surgery.
Terms: Aut | Units: 3
Instructors: Kuhl, E. (PI)

ME 235: Understanding Superfans and their Heroes

Harness the power of the hero coefficient through a radical team-based, hands-on, multidisciplinary class. Students will learn and utilize the principles of Empathy-Define-Ideate-Prototype-Test components of the d.thinking process. Why do superfans love their heroes? You'll get to prototype and explore how superfans connect with their heroes, understanding this connective tissue works will give your own ideas a boost. We'll be studying heroes the likes of Dale Earnhardt, Michael Jordan and Stephen Colbert. Expect to leave this class ready to spread the word about heroes and superfans and make everyone at your company or on your team feel like one. You will hear from special guests and take a field trip to a racetrack. Sponsored by the Revs Program. Limited enrollment. FAQ and apply here: http://revs.stanford.edu/course/693
Last offered: Spring 2013

ME 236: Tales to Design Cars By

Students learn to tell personal narratives and prototype connections between popular and historic media using the automobile. Explores the meaning and impact of personal and preserved car histories. Storytelling techniques serve to make sense of car experiences through engineering design principles and social learning, Replay memories, examine engagement and understand user interviews, to design for the mobility experience of the future. This course celebrates car fascination, and leads the student through finding and telling a car story through the REVS photographic archives, ethnographic research, interviews, and diverse individual and collaborative narrative methods-verbal, non-verbal, and film. Methods draw from socio-cognitive psychology design thinking, and fine art; applied to car storytelling. Course culminates in a final story presentation and showcase. Restricted to co-term and graduate students. Class Size limited to 18.
Terms: Spr | Units: 1-3 | Repeatable 2 times (up to 6 units total)
Instructors: Karanian, B. (PI)

ME 237: 3D Printing for Non-Technical Innovators (ME 137)

3D Printing is a method of creation that requires only some basic computer skills and a few rules of thumb. This class will allow students to discover for themselves the potential and limitations of 3D Printing through a build intensive design project. This course is an excellent option for anyone who ever wanted to prototype an invention, create a work of art, customize a product or just make something cool -- and yet lacked the skills or a fully equipped workshop. Students may enroll for 1 unit to attend the lectures or 3 units for the complete project course. No prior technical knowledge needed.nNote: Course material is targeted toward non-ME Design and non-PD majors. An application is required for the 3-unit course option. Please complete the online application by Friday, March 25th. The application is available on the course website: web.stanford.edu/class/me137
Last offered: Spring 2016

ME 238: Patent Prosecution

The course follows the patent application process through the important stages: inventor interviews, patentability analysis, drafting claims, drafting a specification, filing a patent application, and responding to an office action. The subject matter and practical instruction relevant to each stage are addressed in the context of current rules and case law. The course includes four written assignments: an invention capture, a claim set, a full patent application, and an Office Action response.Pre-requisites: Law 326 (IP:Patents), Law 409 (Intro IP), ME 208, or MS&E 278.
Terms: Win | Units: 2
Instructors: Schox, J. (PI)

ME 239: Mechanics of the Cell

Understanding cells as the fundamental building blocks of life. Cell biomechanics: understanding how cell biology and biochemistry influence the mechanical properties of the cell. Cell mechanobiology: understanding how the mechanical environment, load, pressure, stress or strain can influence the cell's shape and integrity, and eventually its biology and biochemistry. Characterizing, modeling, and simulating cell behavior: energy and entropy of biopolymers and biomembranes. Characterizing mechanotransduction.
Last offered: Winter 2014

ME 240: Introduction to Nanotechnology

Nanotechnology as multidisciplinary with contributions from physical sciences, engineering, and industry. Current topics in nanotechnology research; developments in nanomaterials, mechanics, electronics, and sensors; and applications. Nanoscale materials building blocks, fabrication and assembly processes, characterization and properties, and novel system architectures. Implications for future development.

ME 242B: Mechanical Vibrations (AA 242B)

For M.S.-level graduate students. Covers the vibrations of discrete systems and continuous structures. Introduction to the computational dynamics of linear engineering systems. Review of analytical dynamics of discrete systems; undamped and damped vibrations of N-degree-of-freedom systems; continuous systems; approximation of continuous systems by displacement methods; solution methods for the Eigenvalue problem; direct time-integration methods. Prerequisites: AA 242A or equivalent (recommended but not required); basic knowledge of linear algebra and ODEs; no prior knowledge of structural dynamics is assumed.
Last offered: Spring 2016
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints