2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

151 - 160 of 170 results for: BIO

BIO 303: Current Topics and Concepts in Population Biology, Ecology, and Evolution

Required of first-year PhD students in population biology, and ecology and evolution. Major conceptual issues and developing topics. This course isnnopen only to Biology PhD students and is not open to auditors."
Terms: Win | Units: 1

BIO 304: Current Topics and Concepts in Population Biology, Ecology, and Evolution

Required of first-year PhD students in population biology, and ecology and evolution. Major conceptual issues and developing topics. This course isnnopen only to Biology PhD students and is not open to auditors.
Terms: Spr | Units: 1

BIO 306: Current Topics in Integrative Organismal Biology

Limited to and required of graduate students doing research in this field. At Hopkins Marine Station.
Last offered: Autumn 2011

BIO 312: Ethical Issues in Ecology and Evolutionary Biology

Focus is on ethical issues addressed in Donald Kennedy's Academic Duty and others of importance to academics and scientists in the fields of ecology, behavior, and evolutionary biology. Discussions led by faculty and outside guests. Satisfies ethics course requirement for ecology and evolutionary biology. Prerequisite: PhD student in the ecology and evolutionary biology or marine program, or consent of instructor.
Terms: Aut | Units: 1

BIO 321: Ecological Genetics

Systematic exploration of (1) the types of questions that can be addressed by ecological genetics techniques (i.e., community genomics, genetic variation between species in the same ecosystem, resource use, landscape genetics, etc.); (2) laboratory techniques available; and (3) analyses and modeling best suited for ecological genetics questions. Analysis of specific research problems and efforts (now underway or planned for the near future) among seminar participants, and discussion of these efforts with group review of the relative merits of alternative approaches.
Last offered: Autumn 2011

BIO 325: The Evolution of Body Size (GS 325)

Preference to graduate students and upper-division undergraduates in GS and Biology. The influence of organism size on evolutionary and ecological patterns and processes. Focus is on integration of theoretical principles, observations of living organisms, and data from the fossil record. What are the physiological and ecological correlates of body size? Is there an optimum size? Do organisms tend to evolve to larger size? Does productivity control the size distribution of consumers? Does size affect the likelihood of extinction or speciation? How does size scale from the genome to the phenotype? How is metabolic rate involved in evolution of body size? What is the influence of geographic area on maximum body size?
Last offered: Winter 2012

BIO 326: Foundations in Biogeography

Seminar. Focus on classic papers covering the global distribution and abundance of organisms through time. Topics include: phylogenetics, phylogeography, plate tectonics, island biogeography, climatic change, dispersal, vicariance, ecology of invasions, extinction, gradients, diversity, conservation and a history of the field.
Last offered: Winter 2010

BIO 327: Research Frontiers in Biodiversity and Ecosystem Services

This advanced seminar explores research frontiers in the science of biodiversity and ecosystem services. We will begin with foundational work and then shift to key frontiers now opening up ¿ including DNA barcoding, food web structure and ecosystem processes; remote sensing and modeling biodiversity change and ecosystem services; relating big data on natural capital and human well-being; and nature experience and human mental health. Students will lead discussions and make research presentations. To apply, please email the instructor (gdaily@stanford.edu).
Terms: Spr | Units: 3 | Repeatable 2 times (up to 6 units total)
Instructors: Daily, G. (PI)

BIO 340: The History of Evolution (HISTORY 240, HISTORY 340)

This course examines the history of evolutionary biology from its emergence around the middle of the eighteenth century. We will consider the continual engagement of evolutionary theories of life with a larger, transforming context: philosophical, political, social, economic, institutional, aesthetic, artistic, literary. Our goal will be to achieve a historical rich and nuanced understanding of how evolutionary thinking about life has developed to its current form.
Terms: Win | Units: 4-5

BIO 342: Plant Biology Seminar

Topics announced at the beginning of each quarter. Current literature. May be repeated for credit. See http://carnegiedpb.stanford.edu/seminars/seminars.php.
Terms: Aut, Win, Spr | Units: 1-3 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints