2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 10 results for: BIOS ; Currently searching spring courses. You can expand your search to include all quarters

BIOS 204: Practical Tutorial on the Modeling of Signal Transduction Motifs

Basics of ordinary differential equation modeling of signal transduction motifs, small circuits of regulatory proteins and genes that serve as building blocks of complex regulatory circuits. Morning session covers numerical modeling experiments. Afternoon session explores theory underpinning that day's modeling session. Modeling done using Mathematica, Standard Edition provided to enrolled students.
Terms: Spr | Units: 2
Instructors: Ferrell, J. (PI)

BIOS 205: Introductory data analysis in R for biomedical students

Topics include: basics of R (widely used, open-source programming and data analysis environment) programming language and data structures, reading/writing files, graphics tools for figure generation, basic statistical and regression operations, survey of relevant R library packages. Interactive format combining lectures and computer lab. For course and enrollment information, see http://bios205.stanford.edu.
Terms: Win, Spr | Units: 1
Instructors: Bagley, S. (PI)

BIOS 208: Computational Macromolecule Structure Modeling

Concepts, workflow, and methodology of protein structure modeling presented through short lectures followed by hands-on exercises with the Rosetta software package. Several problem types demonstrate how to formulate and test well-defined hypotheses, in addition to the design and engineering of structure, function, and interactions.
Terms: Spr | Units: 2

BIOS 210: Axonal Transport and Neurodegenerative Diseases

Introduction to mechanisms underlying axonal transport, significance of proper regulation in maintaining neuronal activities, and its implication in disease pathology. Lab section: visualize axonal transport of various axonal organelles such as mitochondria, synaptic vesicles and dense core vesicles in live cells and tissues.
Terms: Spr | Units: 1
Instructors: Wang, X. (PI)

BIOS 211: Histology for Biosciences

Fundamentals of tissue organization as seen by light microscopy. Includes: epithelium, connective tissue, muscle, bone, cartilage, blood cells, nerve, and quick overview of several major organs. Each session has interactive 30 minutennpresentation followed by 1.5 hours viewing glass histology slides using individual microscopes and a multi-­headed microscope. Slide sessions interspersed with interactive exercises to stimulate discussions. Supporting materials include select readings from histology atlas, electron micrographs, and virtual (whole-slide) images provided online.
Terms: Spr | Units: 1
Instructors: Connolly, A. (PI)

BIOS 213: Scientific Illustration and Animation

Techniques of presenting big picture ideas and detailed experiments as simple cartoons. Mixed lecture/lab course culminates with students producing figures and animations for an introduction/conclusion of a research presentation. Covers basic design principles to help produce figures useful for broad and focused audiences. Includes static illustrations, Flash style, and stop motion animation.
Terms: Spr | Units: 1

BIOS 219: Human Gene Regulation: Genomic Thinking and Genomic Tools for Experimentalists

Focused look at the promoter/enhancer and related landscape of the human genome. Genomics and epigenomics of human gene regulation - truth, myths and mysteries. Genomic tools for the interpretation of vertebrate gene regulation experiments and predictions, and the insights behind them. Genomic thinking: purity vs. comprehensiveness, genome-wide vs. single locus. Prerequisites: undergraduate Biology or equivalent. Programming skills not required or taught.
Terms: Spr | Units: 1
Instructors: Bejerano, G. (PI)

BIOS 222: Authentic Courage for Constructive Change: Skills and Practice for Leadership

Explores concepts in decision making and constructive conflict as a mechanism for desired change via purposeful actions. Students assess personal conflict comfort zones and use case studies and class activities to develop skills with authenticity, active and intentional decision making, and other related topics.
Terms: Aut, Spr | Units: 1

BIOS 226: Introduction to Force Spectroscopy

Mini-course. Covers the fundamentals of major single-molecule manipulation methods (optical tweezers, magnetic tweezers, and atomic force microscopy), principles of force measurement signal and noise, and applications to studies of folding, binding, measurement signal and noise, and applications to studies of folding, binding, polymer elasticity, and structural transitions in proteins and nucleic acids. Intended for students with no previous exposure to single-molecule manipulation or for beginning practitioners. Lectures and discussion of current literature.
Terms: Spr | Units: 1

BIOS 228: Understanding Chemistry in Biology and Biological Experiments

Chemical transformations are central to biology and function and chemical methods provide some of the most powerful tools for everyday experimental biology. Focuses on the concepts and principles underlying biological chemical transformations, allowing students to generalize and understand cell metabolism and regulation. Topics include basic principles and procedures to evaluate and utilize in practice chemical approaches in biological experiments. In-class problems and evaluation of literature. Three-week mini-course.
Terms: Spr | Units: 2
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints