2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

21 - 30 of 64 results for: CS

CS 194H: User Interface Design Project

Advanced methods for designing, prototyping, and evaluating user interfaces to computing applications. Novel interface technology, advanced interface design methods, and prototyping tools. Substantial, quarter-long course project that will be presented in a public presentation. Prerequisites: CS 147, or permission of instructor.
Terms: Win | Units: 3-4 | Grading: Letter (ABCD/NP)

CS 194W: Software Project (WIM)

Restricted to Computer Science and Electrical Engineering undergraduates. Writing-intensive version of CS194. Preference given to seniors.
Terms: Win, Spr | Units: 3 | Grading: Letter (ABCD/NP)

CS 196: Computer Consulting

Focus is on Macintosh and Windows operating system maintenance and troubleshooting through hardware and software foundation and concepts. Topics include operating systems, networking, security, troubleshooting methodology with emphasis on Stanford's computing environment. Not a programming course. Prerequisite: 1C or equivalent.
Terms: Win, Spr | Units: 2 | Grading: Satisfactory/No Credit
Instructors: Smith, S. (PI)

CS 198: Teaching Computer Science

Students lead a discussion section of 106A while learning how to teach a programming language at the introductory level. Focus is on teaching skills, techniques, and course specifics. Application and interview required; see http://cs198.stanford.edu.
Terms: Aut, Win, Spr | Units: 3-4 | Grading: Satisfactory/No Credit

CS 198B: Additional Topics in Teaching Computer Science

Students build on the teaching skills developed in CS198. Focus is on techniques used to teach topics covered in CS106B. Prerequisite: successful completion of CS198.
Terms: Aut, Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 199: Independent Work

Special study under faculty direction, usually leading to a written report. Letter grade; if not appropriate, enroll in 199P.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: Agrawala, M. (PI) ; Aiken, A. (PI) ; Akeley, K. (PI) ; Altman, R. (PI) ; Bailis, P. (PI) ; Baker, M. (PI) ; Barbagli, F. (PI) ; Batzoglou, S. (PI) ; Bejerano, G. (PI) ; Bernstein, M. (PI) ; Blikstein, P. (PI) ; Boneh, D. (PI) ; Borenstein, J. (PI) ; Boyd, S. (PI) ; Bradski, G. (PI) ; Brafman, R. (PI) ; Brunskill, E. (PI) ; Cain, J. (PI) ; Cao, P. (PI) ; Casado, M. (PI) ; Charikar, M. (PI) ; Cheriton, D. (PI) ; Cooper, S. (PI) ; Dally, B. (PI) ; De-Micheli, G. (PI) ; Dill, D. (PI) ; Dror, R. (PI) ; Dwork, C. (PI) ; Engler, D. (PI) ; Ermon, S. (PI) ; Fatahalian, K. (PI) ; Fedkiw, R. (PI) ; Feigenbaum, E. (PI) ; Fikes, R. (PI) ; Fisher, K. (PI) ; Fogg, B. (PI) ; Fox, A. (PI) ; Garcia-Molina, H. (PI) ; Genesereth, M. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Goel, A. (PI) ; Goodman, N. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Heer, J. (PI) ; Hennessy, J. (PI) ; Horowitz, M. (PI) ; James, D. (PI) ; Johari, R. (PI) ; Johnson, M. (PI) ; Jurafsky, D. (PI) ; Katti, S. (PI) ; Kay, M. (PI) ; Khatib, O. (PI) ; Klemmer, S. (PI) ; Kochenderfer, M. (PI) ; Koller, D. (PI) ; Koltun, V. (PI) ; Konolige, K. (PI) ; Kozyrakis, C. (PI) ; Kundaje, A. (PI) ; Lam, M. (PI) ; Landay, J. (PI) ; Latombe, J. (PI) ; Lee, C. (PI) ; Leskovec, J. (PI) ; Levis, P. (PI) ; Levitt, M. (PI) ; Levoy, M. (PI) ; Li, F. (PI) ; Liang, P. (PI) ; Lin, H. (PI) ; Manna, Z. (PI) ; Manning, C. (PI) ; Mazieres, D. (PI) ; McCarthy, J. (PI) ; McCluskey, E. (PI) ; McKeown, N. (PI) ; Meng, T. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Motwani, R. (PI) ; Musen, M. (PI) ; Nass, C. (PI) ; Nayak, P. (PI) ; Ng, A. (PI) ; Niebles Duque, J. (PI) ; Nilsson, N. (PI) ; Olukotun, O. (PI) ; Ousterhout, J. (PI) ; Paepcke, A. (PI) ; Pande, V. (PI) ; Parlante, N. (PI) ; Pea, R. (PI) ; Piech, C. (PI) ; Plotkin, S. (PI) ; Plummer, R. (PI) ; Potts, C. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Raghavan, P. (PI) ; Rajaraman, A. (PI) ; Re, C. (PI) ; Reingold, O. (PI) ; Roberts, E. (PI) ; Rosenblum, M. (PI) ; Roughgarden, T. (PI) ; Sadigh, D. (PI) ; Sahami, M. (PI) ; Salisbury, J. (PI) ; Savarese, S. (PI) ; Saxena, A. (PI) ; Schwarz, K. (PI) ; Shoham, Y. (PI) ; Stepp, M. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Trevisan, L. (PI) ; Ullman, J. (PI) ; Valiant, G. (PI) ; Van Roy, B. (PI) ; Widom, J. (PI) ; Wiederhold, G. (PI) ; Williams, R. (PI) ; Williams, V. (PI) ; Winograd, T. (PI) ; Winstein, K. (PI) ; Wootters, M. (PI) ; Young, P. (PI) ; Zaharia, M. (PI) ; Zelenski, J. (PI)

CS 199P: Independent Work

(Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: Agrawala, M. (PI) ; Aiken, A. (PI) ; Altman, R. (PI) ; Angst, R. (PI) ; Baker, M. (PI) ; Batzoglou, S. (PI) ; Bejerano, G. (PI) ; Bernstein, M. (PI) ; Blikstein, P. (PI) ; Boneh, D. (PI) ; Borenstein, J. (PI) ; Bradski, G. (PI) ; Brafman, R. (PI) ; Cain, J. (PI) ; Cao, P. (PI) ; Charikar, M. (PI) ; Cheriton, D. (PI) ; Dally, B. (PI) ; De-Micheli, G. (PI) ; Dill, D. (PI) ; Dror, R. (PI) ; Dwork, C. (PI) ; Engler, D. (PI) ; Fedkiw, R. (PI) ; Feigenbaum, E. (PI) ; Fikes, R. (PI) ; Fisher, K. (PI) ; Fogg, B. (PI) ; Fox, A. (PI) ; Garcia-Molina, H. (PI) ; Genesereth, M. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Goel, A. (PI) ; Goodman, N. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Hennessy, J. (PI) ; Horowitz, M. (PI) ; James, D. (PI) ; Johari, R. (PI) ; Johnson, M. (PI) ; Jurafsky, D. (PI) ; Katti, S. (PI) ; Kay, M. (PI) ; Khatib, O. (PI) ; Klemmer, S. (PI) ; Kochenderfer, M. (PI) ; Koller, D. (PI) ; Koltun, V. (PI) ; Konolige, K. (PI) ; Kozyrakis, C. (PI) ; Kundaje, A. (PI) ; Lam, M. (PI) ; Landay, J. (PI) ; Latombe, J. (PI) ; Lee, C. (PI) ; Leskovec, J. (PI) ; Levis, P. (PI) ; Levitt, M. (PI) ; Levoy, M. (PI) ; Li, F. (PI) ; Liang, P. (PI) ; Lin, H. (PI) ; Manna, Z. (PI) ; Manning, C. (PI) ; Mazieres, D. (PI) ; McCarthy, J. (PI) ; McCluskey, E. (PI) ; McKeown, N. (PI) ; Meng, T. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Motwani, R. (PI) ; Musen, M. (PI) ; Nass, C. (PI) ; Nayak, P. (PI) ; Ng, A. (PI) ; Nilsson, N. (PI) ; Olukotun, O. (PI) ; Ousterhout, J. (PI) ; Parlante, N. (PI) ; Piech, C. (PI) ; Plotkin, S. (PI) ; Plummer, R. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Raghavan, P. (PI) ; Rajaraman, A. (PI) ; Re, C. (PI) ; Reingold, O. (PI) ; Roberts, E. (PI) ; Rosenblum, M. (PI) ; Roughgarden, T. (PI) ; Sahami, M. (PI) ; Salisbury, J. (PI) ; Savarese, S. (PI) ; Saxena, A. (PI) ; Schwarz, K. (PI) ; Shoham, Y. (PI) ; Stepp, M. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Trevisan, L. (PI) ; Ullman, J. (PI) ; Valiant, G. (PI) ; Van Roy, B. (PI) ; Widom, J. (PI) ; Wiederhold, G. (PI) ; Williams, R. (PI) ; Williams, V. (PI) ; Winograd, T. (PI) ; Winstein, K. (PI) ; Wootters, M. (PI) ; Young, P. (PI) ; Zaharia, M. (PI) ; Zelenski, J. (PI) ; Zou, J. (PI)

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics

Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

CS 231A: Computer Vision: From 3D Reconstruction to Recognition

(Formerly 223B) An introduction to the concepts and applications in computer vision. Topics include: cameras and projection models, low-level image processing methods such as filtering and edge detection; mid-level vision topics such as segmentation and clustering; shape reconstruction from stereo, as well as high-level vision tasks such as object recognition, scene recognition, face detection and human motion categorization. Prerequisites: linear algebra, basic probability and statistics.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 234: Reinforcement Learning

To realize the dreams and impact of AI requires autonomous systems that learn to make good decisions. Reinforcement learning is one powerful paradigm for doing so, and it is relevant to an enormous range of tasks, including robotics, game playing, consumer modeling and healthcare. This class will briefly cover background on Markov decision processes and reinforcement learning, before focusing on some of the central problems, including scaling up to large domains and the exploration challenge. One key tool for tackling complex RL domains is deep learning and this class will include at least one homework on deep reinforcement learning. Prerequisites: proficiency in python, CS 229 or equivalents or permission of the instructor; linear algebra, basic probability.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints