2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 62 results for: BIOHOPK

BIOHOPK 320H: Physical Biology

Physics, mathematics, and biology are often studies as separate subjects. In this two-week intensive course we will attempt to bring them together in a dynamic combination of lectures and hands on projects. We will draw on the diverse flora and fauna of Monterey Bay for our experimental organisms, and will take advantage of the facilities at Hopkins Marine Station to explore questions at levels ranging from molecules to ecological communities
Terms: Aut | Units: 3

BIOHOPK 323H: Stanford at Sea (BIOHOPK 182H, EARTHSYS 323, EESS 323)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Terms: Spr | Units: 16

BIOHOPK 801H: TGR Project

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit

BIOHOPK 802H: TGR Dissertation

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit

BIOHOPK 151H: Ecological Mechanics (BIOHOPK 251H)

(Graduate students register for 151H.) A continuation of BIOHOPK 150. The principles of life's physical interactions. We will explore basic physics and fluid dynamics to see how these physical principles can be used to investigate ecology at levels from the individual to the community. Thermal mechanics, biological materials, fracture mechanics, adhesion, beam theory, variation and scale, the statistics of extremes, and self-organization. Open to students from all backgrounds. Some familiarity with basic physics and calculus advantageous, but not necessary.

BIOHOPK 152H: Physiology of Global Change (BIOHOPK 252H)

(Graduate students register for 252H.) Global change is leading to significant alterations in several environmental factors, including temperature, ocean acidity and oxygen availability. This course focuses on: (i) how these environmental changes lead to physiological stress and (ii) how, and to what extent, are organisms able to adapt through short-term acclimatization and evolutionary adaptation to cope with these stresses. A major focus of the class is to link changes in species' distribution patterns with underlying physiological mechanics that establish environmental optima and tolerance limits.

BIOHOPK 160H: Developmental Biology in the Ocean: Diverse Embryonic & Larval Strategies of marine invertebrates (BIOHOPK 260H)

(Graduate students register for 261H). Lab course is designed to introduce students to the diversity in the early developmental strategies of marine invertebrates and how an understanding of these microscopic life histories is key to understanding the evolutionary diversification of phyla and the distribution of their more familiar adults. Emphasis is on hands-on collection, spawning, observation and manipulation of embryos and their larvae.
| Repeatable 2 times (up to 16 units total)

BIOHOPK 165H: The Extreme Life of the Sea (BIOHOPK 265H)

(Graduate students register for 265H). Lecture course that explores the way marine species live in extreme ocean habitats. We will cover the deepest, hottest, coldest, and shallowest habitats and the biggest, fastest, most fecund, oldest and smallest species. We will focus on the molecular, physiological and ecological adaptations that allow species to thrive in these unusual environments.
| Repeatable 2 times (up to 6 units total)

BIOHOPK 166H: Molecular Ecology (BIOHOPK 266H)

(Graduate students register for 266H.) How modern technologies in gene sequencing, detection of nuclear nucleotide polymorphisms, and other approaches are used to gather data on genetic variation that allow measurement of population structure, infer demographic histories, inform conservation efforts, and advance understanding of the ecology of diverse types of organisms.
| UG Reqs: GER: DB-NatSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints