2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

111 - 120 of 297 results for: ME

ME 313: Human Values and Innovation in Design

Introduction to the philosophy, spirit, and tradition of the product design program. Hands-on design projects used as vehicles for design thinking, visualization, and methodology. The relationships among technical, human, aesthetic, and business concerns. Drawing, prototyping, and design skills. Focus is on tenets of design philosophy: point of view, user-centered design, design methodology, and iterative design.
Terms: Aut | Units: 3
Instructors: Burnett, W. (PI)

ME 314: Good Products, Bad Products (ME 214)

The characteristics of industrial products that cause them to be successes or failures: the straightforward (performance, economy, reliability), the complicated (human and cultural fit, compatibility with the environment, craftsmanship, positive emotional response of the user), the esoteric (elegance, sophistication, symbolism). Engineers and business people must better understand these factors to produce more successful products. Projects, papers, guest speakers, field trips.
Terms: Win | Units: 3-4
Instructors: Beach, D. (PI)

ME 315: The Designer in Society

For graduate students. Career objectives and psychological orientation compared with existing social values and conditions. Emphasis is on assisting individuals in assessing their roles in society. Readings on political, social, and humanistic thought are related to technology and design. Experiential, in-class exercises, and term project. Enrollment limited to 24. Admission by application. See dschool.stanford.edu/classes for more information and attend the first day of class.
Terms: Win | Units: 3

ME 316A: Product Design Master's Project

For graduate Product Design or Design (Art) majors only. Student teams, under the supervision of the design faculty, spend the quarter researching master's project topics. Students are expected to demonstrate mastery of design thinking methods including; needfinding, brainstorming, field interviews and synthesis during this investigation. Masters projects are selected that involve the synthesis of aesthetics and technological concerns in the service of human need. Design Institute class; see http://dschool.stanford.edu. Prereq: ME277, ME312, ME313
Terms: Aut | Units: 2-6

ME 316B: Product Design Master's Project

Design Garage is a Winter/Spring class (a two quarter commitment is required). The class is a deep dive in design thinking that uses student-led projects to teach design process and methods. The projects come from investigations conducted during the Fall quarter where the preliminary need finding, customer research, and product or service ideas have been developed to provide the seed projects for the student design teams. Students will learn the methodologies of design thinking by bringing a product, service, or experience to market. Students apply to Design Garage in the Fall, and teams are formed after interviews and applications are reviewed. Prerequisite: graduate student standing.
Terms: Win | Units: 2-4

ME 316C: Product Design Master's Project

This is the second half of the two quarter Design Garage sequence. Students will complete projects begun in ME316B the prior quarter. Prerequisite: ME316B and graduate student standing. Design Institute class; see http://dschool.stanford.edu.
Terms: Spr | Units: 2-4 | Repeatable for credit

ME 317A: Design Methods: Product Definition

Systematic methodologies to define, develop, and produce world-class products. Student team projects to identify opportunities for improvement and develop a comprehensive product definition. Topics include value engineering, quality function deployment, FMEA and risk analysis, robustness, design for variety, design for life-cycle quality, financial analysis and Monte Carlo simulation. Students must take 317B to complete the project and obtain a letter grade. On-campus enrollment limited to 25; SCPD class size is limited to 75.
Instructors: Beiter, K. (PI)

ME 317B: Design Methods: Quality By Design

Building on 317A, focus is on the implementation of competitive product design. Student groups apply structured methods to optimize the design of an improved product, and plan for its manufacture, testing, and service. The project deliverable is a comprehensive product and process specification. Topics: concept generation and selection (Pugh's Method), Poka Yoke, design for robustness, Monte Carlo and Design for Six Sigma, process capability analysis, financial analysis, and prototyping. On-campus class limited to 25. For SCPD students, limit is 75. Prerequisite: 317A.
Instructors: Beiter, K. (PI)

ME 318: Computer-Aided Product Creation

Design course focusing on an integrated suite of computer tools: rapid prototyping, solid modeling, computer-aided machining, and computer numerical control manufacturing. Students choose, design, and manufacture individual products, emphasizing individual design process and computer design tools. Field trips demonstrate Stanford Product Realization Lab's relationship to the outside world. Structured lab experiences build a basic CAD/CAM/CNC proficiency. Limited enrollment. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr | Units: 4
Instructors: Milroy, J. (PI)

ME 320: Introduction to Robotics (CS 223A)

Robotics foundations in modeling, design, planning, and control. Class covers relevant results from geometry, kinematics, statics, dynamics, motion planning, and control, providing the basic methodologies and tools in robotics research and applications. Concepts and models are illustrated through physical robot platforms, interactive robot simulations, and video segments relevant to historical research developments or to emerging application areas in the field. Recommended: matrix algebra.
Terms: Win | Units: 3
Instructors: Khatib, O. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints