2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

11 - 20 of 134 results for: all courses

BIO 113: Fundamentals of Molecular Evolution (BIO 244)

The inference of key molecular evolutionary processes from DNA and protein sequences. Topics include random genetic drift, coalescent models, effects and tests of natural selection, combined effects of linkage and natural selection, codon bias and genome evolution. Prerequisites: Biology core or BIO 82, 85 or graduate standing in any department, and consent of instructor.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci

BIO 116: Ecology of the Hawaiian Islands (SUSTAIN 116)

Terrestrial and marine ecology and conservation biology of the Hawaiian Archipelago. Taught in the field in Hawaii as part of quarter-long sequence of courses including Earth Sciences and Anthropology. Topics include ecological succession, plant-soil interactions, conservation biology, biological invasions and ecosystem consequences, and coral reef ecology. Restricted to students accepted into the Wrigley Field Program in Hawaii.
Last offered: Autumn 2022 | UG Reqs: GER: DB-NatSci

BIO 117: Biology and Global Change (EARTHSYS 111, EARTHSYS 217, ESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or BIO 81 or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 132: Advanced Imaging Lab in Biophysics (APPPHYS 232, BIO 232, BIOE 232, BIOPHYS 232, GENE 232)

Laboratory and lectures. Advanced microscopy and imaging, emphasizing hands-on experience with state-of-the-art techniques. Students construct and operate working apparatus. Topics include microscope optics, Koehler illumination, contrast-generating mechanisms (bright/dark field, fluorescence, phase contrast, differential interference contrast), and resolution limits. Laboratory topics vary by year, but include single-molecule fluorescence, fluorescence resonance energy transfer, confocal microscopy, two-photon microscopy, microendoscopy, and optical trapping. Limited enrollment. Recommended: basic physics, basic cell biology, and consent of instructor.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci

BIO 144: Conservation Biology: A Latin American Perspective (BIO 234, HUMBIO 112)

Principles and application of the science of preserving biological diversity. Conceptually, this course is designed to explore the major components relevant to the conservation of biodiversity, as exemplified by the Latin American region. The conceptual frameworks and principles, however, should be generally applicable, and provide insights for all regions of the world. All students will be expected to conduct a literature research exercise leading to a written report, addressing a topic of their choosing, derived from any of the themes discussed in class.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci

BIO 145: Animal Behavior (BIO 245)

Animal behavior with an emphasis on social and collective behavior. How do animals interact with each other and the rest of the world around them? This is a project-based course in a seminar format, including class discussion of journal articles, and independent research projects based on observing the behavior of animals on campus. Prerequisites suggested: Biology or Human Biology core or BIO 81 and 85 or consent of instructor; BIO/ES 30. Recommended: some background in statistics.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Gordon, D. (PI)

BIO 149: The Neurobiology of Sleep (BIO 249, HUMBIO 161, PSYC 149, PSYC 261)

The neurochemistry and neurophysiology of changes in brain activity and conscious awareness are associated with changes in the sleep/wake state. Behavioral and neurobiological phenomena include sleep regulation, sleep homeostasis, circadian rhythms, sleep disorders, sleep function, and the molecular biology of sleep. Preference to seniors and graduate students.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 150: Human Behavioral Biology (HUMBIO 160)

Multidisciplinary. How to approach complex normal and abnormal behaviors through biology. How to integrate disciplines including sociobiology, ethology, neuroscience, and endocrinology to examine behaviors such as aggression, sexual behavior, language use, and mental illness.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 151: Mechanisms of Neuron Death

For undergraduates with backgrounds in neuroscience. Cell and molecular biology of neuron death during neurological disease. Topics: the amyloid diseases (Alzheimer's), prion diseases (kuru and Creutzfeldt-Jakob), oxygen radical diseases (Parkinson's and ALS), triplet repeat diseases (Huntington's), and AIDS-related dementia. Assessment based on in-class participation and short weekly papers. Enrollment is limited to 15; an application is required. Enrollment by permission of professor, apply at https://forms.gle/bb9bXf1wGHFiuTAn8
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Sapolsky, R. (PI)

BIO 152: Imaging: Biological Light Microscopy (MCP 222)

This intensive laboratory and discussion course will provide participants with the theoretical and practical knowledge to utilize emerging imaging technologies based on light microscopy. Topics include microscope optics, resolution limits, Köhler illumination, confocal fluorescence, two-photon, TIRF, FRET, photobleaching, super-resolution (SIM, STED, STORM/PALM), tissue clearing/CLARITY/light-sheet microscopy, and live-cell imaging. Applications include using fluorescent probes to analyze subcellular localization and live cell-translocation dynamics. We will be using a flipped classroom for the course in that students will watch iBiology lectures before class, and class time will be used for engaging in extensive discussion. Lab portion involves extensive in-class use of microscopes in the CSIF and NMS core microscopy facilities.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Lewis, R. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints