2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

11 - 20 of 39 results for: MATSCI ; Currently searching spring courses. You can expand your search to include all quarters

MATSCI 173: Mechanical Behavior Laboratory (MATSCI 163)

This course introduces students to experimental techniques widely used in both industry and academia to characterize the mechanical properties of engineering materials. Students will learn how to perform tensile testing and nanoindentation experiments and how they can be used to study the mechanical behavior of several materials including metals, ceramics, and polymers. Through our laboratory sessions, students will also explore concepts related to materials fabrication and design, data analysis, performance optimization, and experimental decision-making. Enrollment is limited to 20. Prerequisites: ENGR 50 or equivalent introductory materials science course. MATSCI 151 and MATSCI 160 recommended." Undergraduates register for 163 for 4 units, Graduates register for 173 for 3 units.
Terms: Spr | Units: 3-4

MATSCI 174: Electronic and Photonic Materials and Devices Laboratory (MATSCI 164)

Lab course. Current electronic and photonic materials and devices. Device physics and micro-fabrication techniques. Students design, fabricate, and perform physical characterization on the devices they have fabricated. Established techniques and materials such as photolithography, metal evaporation, and Si technology; and novel ones such as soft lithography and organic semiconductors. Prerequisite: MATSCI 152 or 199 or consent of instructor. Undergraduates register in 164 for 4 units; graduates register in 174 for 3 units. Students are required to sign up for lecture and one lab section. Lab section availability will be discussed during week 1.
Terms: Spr | Units: 3-4

MATSCI 183: Defects and Disorder in Materials

Overview of defects and disorder across crystalline, amorphous, and glassy phases that are central to function and application, spanning metals, ceramics, and soft/biological matter. Structure and properties of simple 0D/1D/2D defects in crystalline materials. Scaling laws, connectivity and frustration, and hierarchy/distributions of structure across length scales in more disordered materials. Key characterization techniquesnnPre-reqs: MATSCI 211 (thermo), 212 (kinetics)
Terms: Spr | Units: 4

MATSCI 190: Organic and Biological Materials (MATSCI 210)

Unique physical and chemical properties of organic materials and their uses. The relationship between structure and physical properties, and techniques to determine chemical structure and molecular ordering. Examples include liquid crystals, dendrimers, carbon nanotubes, hydrogels, and biopolymers such as lipids, protein, and DNA. Prerequisite: Thermodynamics and ENGR 50 or equivalent. Undergraduates register for 190 for 4 units; graduates register for 210 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA, WAY-AQR, GER:DB-EngrAppSci

MATSCI 198: Mechanical Properties of Materials (MATSCI 208)

Introduction to the mechanical behavior of solids, emphasizing the relationships between microstructure and mechanical properties. Elastic, anelastic, and plastic properties of materials. The relations between stress, strain, strain rate, and temperature for plastically deformable solids. Application of dislocation theory to strengthening mechanisms in crystalline solids. The phenomena of creep, fracture, and fatigue and their controlling mechanisms. Prerequisites: MATSCI 193/203. Undergraduates register for 198 for 4 units; graduates register for 208 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

MATSCI 199: Electronic and Optical Properties of Solids (MATSCI 209)

The concepts of electronic energy bands and transports applied to metals, semiconductors, and insulators. The behavior of electronic and optical devices including p-n junctions, MOS-capacitors, MOSFETs, optical waveguides, quantum-well lasers, light amplifiers, and metallo-dielectric light guides. Emphasis is on relationships between structure and physical properties. Elementary quantum and statistical mechanics concepts are used. Prerequisite: MATSCI 195/205 or equivalent. Undergraduates register for 199 for 4 units; graduates register for 209 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 200: Master's Research

Participation in a research project.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

MATSCI 208: Mechanical Properties of Materials (MATSCI 198)

Terms: Spr | Units: 3-4

MATSCI 209: Electronic and Optical Properties of Solids (MATSCI 199)

The concepts of electronic energy bands and transports applied to metals, semiconductors, and insulators. The behavior of electronic and optical devices including p-n junctions, MOS-capacitors, MOSFETs, optical waveguides, quantum-well lasers, light amplifiers, and metallo-dielectric light guides. Emphasis is on relationships between structure and physical properties. Elementary quantum and statistical mechanics concepts are used. Prerequisite: MATSCI 195/205 or equivalent. Undergraduates register for 199 for 4 units; graduates register for 209 for 3 units.
Terms: Spr | Units: 3-4

MATSCI 210: Organic and Biological Materials (MATSCI 190)

Unique physical and chemical properties of organic materials and their uses. The relationship between structure and physical properties, and techniques to determine chemical structure and molecular ordering. Examples include liquid crystals, dendrimers, carbon nanotubes, hydrogels, and biopolymers such as lipids, protein, and DNA. Prerequisite: Thermodynamics and ENGR 50 or equivalent. Undergraduates register for 190 for 4 units; graduates register for 210 for 3 units.
Terms: Spr | Units: 3-4
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints