2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

21 - 30 of 46 results for: APPPHYS

APPPHYS 236: Biology by the Numbers (BIOC 236)

For PhD students and advanced undergraduates. Students will develop skills in quantitative reasoning over a wide range of biological problems. Topics: biological size scales ranging from proteins to ecosystems; biological times time scales ranging from enzymatic catalysis and DNA replication to evolution; biological energy, motion and force from molecular to organismic scales; mechanisms of environmental sensing ranging from bacterial chemotaxis to vision.
Last offered: Winter 2015

APPPHYS 270: Magnetism and Long Range Order in Solids

Cooperative effects in solids. Topics include the origin of magnetism in solids, crystal electric field effects and anisotropy, exchange, phase transitions and long-range order, ferromagnetism, antiferromagnetism, metamagnetism, density waves and superconductivity. Emphasis is on archetypal materials. Prerequisite: PHYSICS 172 or MATSCI 209, or equivalent introductory condensed matter physics course.
Terms: Spr | Units: 3
Instructors: Fisher, I. (PI)

APPPHYS 272: Solid State Physics (PHYSICS 172)

Introduction to the properties of solids. Crystal structures and bonding in materials. Momentum-space analysis and diffraction probes. Lattice dynamics, phonon theory and measurements, thermal properties. Electronic structure theory, classical and quantum; free, nearly-free, and tight-binding limits. Electron dynamics and basic transport properties; quantum oscillations. Properties and applications of semiconductors. Reduced-dimensional systems. Undergraduates should register for PHYSICS 172 and graduate students for APPPHYS 272. Prerequisites: PHYSICS 170 and PHYSICS 171, or equivalents.
Terms: Spr | Units: 3

APPPHYS 273: Solid State Physics II

Introduction to the many-body aspects of crystalline solids. Second quantization of phonons, anharmonic effects, polaritons, and scattering theory. Second quantization of Fermi fields. Electrons in the Hartree-Fock and random phase approximation; electron screening and plasmons. Magnetic exchange interactions. Electron-phonon interaction in ionic/covalent semiconductors and metals; effective attractive electron-electron interactions, Cooper pairing, and BCS description of the superconducting state. Prerequisite: APPPHYS 272 or PHYSICS 172.
Terms: Aut | Units: 3
Instructors: Hwang, H. (PI)

APPPHYS 280: Phenomenology of Superconductors

Phenomenology of superconductivity viewed as a macroscopic quantum phenomenon. Topics include the superconducting pair wave function, London and Ginzburg-Landau theories, the Josephson effect, type I type II superconductivity, and the response of superconductors to currents, magnetic fields, and RF electromagnetic radiation. Introduction to thermal fluctuation effects in superconductors and quantum superconductivity.
Terms: Aut | Units: 3

APPPHYS 290: Directed Studies in Applied Physics

Special studies under the direction of a faculty member for which academic credit may properly be allowed. May include lab work or directed reading.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

APPPHYS 291: Practical Training

Opportunity for practical training in industrial labs. Arranged by student with research adviser's approval. Summary of activities required.
Terms: Sum | Units: 3 | Repeatable for credit

APPPHYS 294: Cellular Biophysics (BIO 294, BIOPHYS 294)

Physical biology of dynamical and mechanical processes in cells. Emphasis is on qualitative understanding of biological functions through quantitative analysis and simple mathematical models. Sensory transduction, signaling, adaptation, switches, molecular motors, actin and microtubules, motility, and circadian clocks. Prerequisites: differential equations and introductory statistical mechanics.
Last offered: Autumn 2015

APPPHYS 302: Experimental Techniques in Condensed Matter Physics

Cryogenics; low signal measurements and noise analysis; data collection and analysis; examples of current experiments. Prerequisites: PHYSICS 170, PHYSICS 171, and PHYSICS 172, or equivalents.
Last offered: Winter 2016
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints