2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 38 results for: BIOE ; Currently searching spring courses. You can expand your search to include all quarters

BIOE 32Q: Bon Appétit, Marie Curie! The Science Behind Haute Cuisine

This seminar is for anyone who loves food, cooking or science! We will focus on the science and biology behind the techniques and the taste buds. Not a single lecture will pass by without a delicious opportunity - each weekly meeting will include not only lecture, but also a lab demonstration and a chance to prepare classic dishes that illustrate that day's scientific concepts.
Terms: Spr | Units: 3
Instructors: Covert, M. (PI)

BIOE 42: Physical Biology of Cells

Principles of transport, continuum mechanics, and fluids, with applications to cell biology. Topics include random walks, diffusion, Langevin dynamics, transport theory, low Reynolds number flow, and beam theory, with applications including quantitative models of protein trafficking in the cell, mechanics of the cell cytoskeleton, the effects of molecular noise in development, the electromagnetics of nerve impulses, and an introduction to cardiovascular fluid flow. Prerequisites: MATH 41, 42; CHEM 31A, B (or 31X); strongly recommended: CS 106A, PHYSICS 41, CME 100 or MATH 51, and CME 106; or instructor approval. 4 units, Spr (Huang, K)
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA
Instructors: Quake, S. (PI)

BIOE 51: Anatomy for Bioengineers

Fundamental human anatomy, spanning major body systems and tissues including nerve, muscle, bone, cardiovascular, respiratory, gastrointestinal, and renal systems. Explore intricacies of structure and function, and how various body parts come together to form a coherent and adaptable living being. Correlate clinical conditions and therapeutic interventions. Participate in lab sessions with predissected cadaveric material and hands-on learning to gain understanding of the bioengineering human application domain. Encourage anatomical thinking, defining challenges and opportunities for bioengineers.
Terms: Spr | Units: 4

BIOE 70Q: Medical Device Innovation

BIOE 70Q introduces students to the design of medical technologies and the non-technical factors that impact their clinical adoption and market success. Guest speakers include engineers, doctors, and other professionals who have helped bring ideas from concept to clinical use. Hands-on design projects will challenge students to invent their own solutions to clinical needs. No previous engineering training is required.
Terms: Spr | Units: 3 | UG Reqs: WAY-CE

BIOE 80: Introduction to Bioengineering (ENGR 80)

Broad but rigorous overview of the field of bioengineering, centered around the common theme of engineering analysis and design of biological systems. Topics include biomechanics, systems and synthetic biology, physical biology, biomolecular engineering, tissue engineering, and devices. Emphasis on critical thinking and problem solving approaches, and quantitative methods applied to biology. 4 units, Spr (Cochran)
Terms: Spr | Units: 4 | UG Reqs: WAY-FR, GER:DB-EngrAppSci

BIOE 103: Systems Physiology and Design

Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics. Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs. Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: MATH 41, 42; CME 102; PHY 41; BIO 41, 42; strongly recommended PHY 43; or instructor approval.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, WAY-AQR

BIOE 103B: Systems Physiology and Design

*ONLINE Offering of BIOE103. This pilot class, BIOE103B, is an entirely online offering with the same content, learning goals, and prerequisites as BIOE103. Students attend class by watching videos and completing assignments remotely. Students may attend recitation and office hours in person, but cannot attend the BIOE103 in-person lecture due to room capacity restraints.* Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics. Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs. Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: MATH 41, 42; CME 102; PHY 41; BIO 41, 42; strongly recommended PHY 43; or instructor approval.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, WAY-AQR

BIOE 122: Biosecurity and Bioterrorism Response (PUBLPOL 122, SURG 122)

Overview of the most pressing biosecurity issues facing the world today. Guest lecturers have included former Secretary of State Condoleezza Rice, former Special Assistant on BioSecurity to Presidents Clinton and Bush Jr. Dr. Ken Bernard, Chief Medical Officer of the Homeland Security Department Dr. Alex Garza, eminent scientists, innovators and physicians in the field, and leaders of relevant technology companies. How well the US and global healthcare systems are prepared to withstand a pandemic or a bioterrorism attack, how the medical/healthcare field, government, and the technology sectors are involved in biosecurity and pandemic or bioterrorism response and how they interface, the rise of synthetic biology with its promises and threats, global bio-surveillance, making the medical diagnosis, isolation, containment, hospital surge capacity, stockpiling and distribution of countermeasures, food and agriculture biosecurity, new promising technologies for detection of bio-threats and countermeasures. Open to medical, graduate, and undergraduate students. No prior background in biology necessary. This course satisfies the TiS requirement for Engineering students; please check with your major advisor to verify this. 4 units for twice weekly attendance (Mon. and Wed.); additional 1 unit for writing a research paper for 5 units total maximum. PLEASE NOTE: This class will meet for the first time on Wednesday, April 1.
Terms: Spr | Units: 4-5 | UG Reqs: GER:EC-GlobalCom, GER: DB-NatSci
Instructors: Trounce, M. (PI)

BIOE 131: Ethics in Bioengineering

Bioengineering focuses on the development and application of new technologies in the biology and medicine. These technologies often have powerful effects on living systems at the microscopic and macroscopic level. They can provide great benefit to society, but they also can be used in dangerous or damaging ways. These effects may be positive or negative, and so it is critical that bioengineers understand the basic principles of ethics when thinking about how the technologies they develop can and should be applied. On a personal level, every bioengineer should understand the basic principles of ethical behavior in the professional setting. This course will involve substantial writing, and will use case-study methodology to introduce both societal and personal ethical principles, with a focus on practical applications.
Terms: Spr | Units: 3 | UG Reqs: GER:EC-EthicReas, WAY-ER

BIOE 191: Bioengineering Problems and Experimental Investigation

Directed study and research for undergraduates on a subject of mutual interest to student and instructor. Prerequisites: consent of instructor and adviser. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints