2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

21 - 30 of 426 results for: CSI::certificate

BIOE 374A: Biodesign Innovation: Needs Finding and Concept Creation (ME 368A, MED 272A)

In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and int more »
In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are required to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of 50 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Win | Units: 4

BIOE 374B: Biodesign Innovation: Concept Development and Implementation (ME 368B, MED 272B)

In this two-quarter course, multidisciplinary teams identify real unmet healthcare needs, invent health technologies to address them, and plan for their implementation into patient care. In second quarter, teams select a lead solution to advance through technical prototyping, strategies to address healthcare-specific requirements (IP, regulation, reimbursement), and business planning. Class sessions include faculty-led instruction, case studies, coaching sessions by experts, guest lecturers, and interactive team meetings. Enrollment is by application. Students are required to take both quarters of the course.
Terms: Spr | Units: 4 | Repeatable 2 times (up to 8 units total)

BIOE 393: Bioengineering Departmental Research Colloquium

Bioengineering department labs at Stanford present recent research projects and results. Guest lecturers. Topics include applications of engineering to biology, medicine, biotechnology, and medical technology, including biodesign and devices, molecular and cellular engineering, regenerative medicine and tissue engineering, biomedical imaging, and biomedical computation.
Terms: Aut | Units: 1 | Repeatable for credit

BIOMEDIN 156: Economics of Health and Medical Care (BIOMEDIN 256, ECON 126, HRP 256)

Institutional, theoretical, and empirical analysis of the problems of health and medical care. Topics: demand for medical care and medical insurance; institutions in the health sector; economics of information applied to the market for health insurance and for health care; economics of health care labor markets and health care production; and economic epidemiology. Graduate students with research interests should take ECON 249. Prerequisites: ECON 50 and either ECON 102A or STATS 116 or the equivalent. Recommended: ECON 51.
Terms: Spr | Units: 5 | UG Reqs: WAY-SI

BIOMEDIN 215: Data Science for Medicine

The widespread adoption of electronic health records (EHRs) has created a new source of big data namely, the record of routine clinical practice as a by-product of care. This graduate class will teach you how to use EHRs and other patient data to discover new clinical knowledge and improve healthcare. Upon completing this course, you should be able to: differentiate between and give examples of categories of research questions and the study designs used to address them, describe common healthcare data sources and their relative advantages and limitations, extract and transform various kinds of clinical data to create analysis-ready datasets, design and execute an analysis of a clinical dataset based on your familiarity with the workings, applicability, and limitations of common statistical methods, evaluate and criticize published research using your knowledge of 1-4 to generate new research ideas and separate hype from reality. Prerequisites: CS 106A or equivalent, STATS 60 or equivalent. Recommended: STATS 216, CS 145, STATS 305NOTE: For students in the Department of Biomedical Data Science Program, this core course MUST be taken as a letter grade only.
Terms: Aut | Units: 3

BIOMEDIN 251: Outcomes Analysis (HRP 252, MED 252)

This course introduces and develops methods for conducting empirical research that address clinical and policy questions that are not suitable for randomized trials. Conceptual and applied models of causal inference guide the design of empirical research. Econometric and statistical models are used to conduct health outcomes research which use large existing medical, survey, and other databases Problem sets emphasize hands-on data analysis and application of methods, including re-analyses of well-known studies. This is a project-based course designed for students pursuing research training. Prerequisites: one or more courses in probability, and statistics or biostatistics.
Terms: Spr | Units: 4
Instructors: Bendavid, E. (PI)

BIOMEDIN 256: Economics of Health and Medical Care (BIOMEDIN 156, ECON 126, HRP 256)

Institutional, theoretical, and empirical analysis of the problems of health and medical care. Topics: demand for medical care and medical insurance; institutions in the health sector; economics of information applied to the market for health insurance and for health care; economics of health care labor markets and health care production; and economic epidemiology. Graduate students with research interests should take ECON 249. Prerequisites: ECON 50 and either ECON 102A or STATS 116 or the equivalent. Recommended: ECON 51.
Terms: Spr | Units: 5

BIOMEDIN 432: Analysis of Costs, Risks, and Benefits of Health Care (HRP 392)

For graduate students. How to do cost/benefit analysis when the output is difficult or impossible to measure. Literature on the principles of cost/benefit analysis applied to health care. Critical review of actual studies. Emphasis is on the art of practical application.
Terms: Aut | Units: 4

CEE 63: Weather and Storms (CEE 263C)

Daily and severe weather and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, wind energy, global circulation, jet streams, high and low pressure systems, inversions, el Ni¿o, la Ni¿a, atmosphere/ocean interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate and atmospheric optics.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

CEE 64: Air Pollution and Global Warming: History, Science, and Solutions (CEE 263D)

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints