2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

151 - 160 of 183 results for: all courses

ME 24N: Designing the Car of the Future

Preference to freshmen. Automotive design drawing from all areas of mechanical engineering. The state of the art in automotive design and the engineering principles to understand vehicle performance. Future technologies for vehicles. Topics include vehicle emissions and fuel consumption, possibilities of hydrogen, drive-by-wire systems, active safety and collision avoidance, and human-machine interface issues.
Last offered: Autumn 2007 | UG Reqs: GER:DB-EngrAppSci

ME 70: Introductory Fluids Engineering

Elements of fluid mechanics as applied to engineering problems. Equations of motion for incompressible ideal flow. Hydrostatics. Control volume laws for mass, momentum, and energy. Bernoulli equation. Dimensional analysis and similarity. Flow in ducts. Boundary layer flows. Lift and drag. Lab experiment demonstrations. Prerequisites: ENGR 14 and 30.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 80: Mechanics of Materials

Mechanics of materials and deformation of structural members. Topics include stress and deformation analysis under axial loading, torsion and bending, column buckling and pressure vessels. Introduction to stress transformation and multiaxial loading. Prerequisite: ENGR 14.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 101: Visual Thinking

Lecture/lab. Visual thinking and language skills are developed and exercised in the context of solving design problems. Exercises for the mind's eye. Rapid visualization and prototyping with emphasis on fluent and flexible idea production. The relationship between visual thinking and the creative process. Limited enrollment. Attend the first day of class.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: WAY-CE, GER:DB-EngrAppSci

ME 112: Mechanical Systems Design

Lecture/lab. Characteristics of machine elements including gears, bearings, and shafts. Design for fatigue life. Electric motor fundamentals. Transmission design for maximizing output power or efficiency. Mechanism types, linkage analysis and kinematic synthesis. Team-based design projects emphasizing the balance of physical with virtual prototyping based on engineering analysis. Lab for dissection of mechanical systems and project design reviews. Prerequisites: 80, 101. Recommended: 203, ENGR 15.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 113: Mechanical Engineering Design

Capstone course. Mechanical engineering design is experienced by students as they work on team projects. Prerequisites: 80, 101, 112, 203. Enrollment limited to ME majors. One of two available capstone design courses.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 115B: Product Design Methods

Problem-finding, problem-solving, intermediate creativity methods and effective techniques for researching and presenting product concepts. Individual- and team-based design projects emphasizing advanced visual thinking and prototyping skills. Prerequisite: ME115A
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci

ME 131A: Heat Transfer

The principles of heat transfer by conduction, convection, and radiation with examples from the engineering of practical devices and systems. Topics include transient and steady conduction, conduction by extended surfaces, boundary layer theory for forced and natural convection, boiling, heat exchangers, and graybody radiative exchange. Prerequisites: 70, ENGR 30. Recommended: intermediate calculus, ordinary differential equations.
Terms: Aut, Win | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci

ME 131B: Fluid Mechanics: Compressible Flow and Turbomachinery

Engineering applications involving compressible flow: aircraft and rocket propulsion, power generation; application of mass, momentum, energy and entropy balance to compressible flows; variable area isentropic flow, normal shock waves, adiabatic flow with friction, flow with heat addition. Operation of flow systems: the propulsion system. Turbomachinery: pumps, compressors, turbines. Angular momentum analysis of turbomachine performance, centrifugal and axial flow machines, effect of blade geometry, dimensionless performance of turbomachines; hydraulic turbines; steam turbines; wind turbines. Compressible flow turbomachinery: the aircraft engine. Prerequisites: 70, ENGR 30.
Terms: Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 140: Advanced Thermal Systems

Capstone course. Thermal analysis and engineering emphasizing integrating heat transfer, fluid mechanics, and thermodynamics into a unified approach to treating complex systems. Mixtures, humidity, chemical and phase equilibrium, and availability. Labs apply principles through hands-on experience with a turbojet engine, PEM fuel cell, and hybrid solid/oxygen rocket motor. Use of MATLAB as a computational tool. Prerequisites: ENGR 30, ME 70, and 131A,B.
Terms: Spr | Units: 5 | UG Reqs: GER:DB-EngrAppSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints