2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

51 - 60 of 215 results for: CS

CS 211: Content Creation in Virtual Reality

Students are immersed in a cutting edge virtual reality development environment consisting of both hardware and software elements. Studentsnwill progress from configuring a comprehensive development environment to designing and implementing networked content in VR. The deep development focus is overlaid with a discussion series with leaders in the VR space to provide both breadth and depth to a student¿s understanding of the VR space. Prerequisites: CS 107 or equivalent. A strong software development background is required that includes comfort with C++. Design experience a plus.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 221: Artificial Intelligence: Principles and Techniques

Artificial intelligence (AI) has had a huge impact in many areas, including medical diagnosis, speech recognition, robotics, web search, advertising, and scheduling. This course focuses on the foundational concepts that drive these applications. In short, AI is the mathematics of making good decisions given incomplete information (hence the need for probability) and limited computation (hence the need for algorithms). Specific topics include search, constraint satisfaction, game playing, Markov decision processes, graphical models, machine learning, and logic. Prerequisites: CS 103 or CS 103B/X, CS 106B or CS 106X, CS 107, and CS 109 (algorithms, probability, and programming experience).
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Liang, P. (PI)

CS 223A: Introduction to Robotics (ME 320)

Robotics foundations in modeling, design, planning, and control. Class covers relevant results from geometry, kinematics, statics, dynamics, motion planning, and control, providing the basic methodologies and tools in robotics research and applications. Concepts and models are illustrated through physical robot platforms, interactive robot simulations, and video segments relevant to historical research developments or to emerging application areas in the field. Recommended: matrix algebra.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Khatib, O. (PI)

CS 224D: Deep Learning for Natural Language Processing

Deep learning approaches have obtained very high performance across many different natural language processing tasks. In this class, students will learn to understand, implement, train, debug, visualize and potentially invent their own neural network models for a variety of language understanding tasks. The course provides a deep excursion from early models to cutting-edge research. Applications will range across a broad spectrum: from simple tasks like part of speech tagging, over sentiment analysis to question answering and machine translation. The final project will involve implementing a complex neural network model and applying it to a large scale NLP problem. Prerequisites: programming abilities (python), linear algebra, Math 21 or equivalent, machine learning background ( CS 229 or similar) Recommended: machine learning ( CS 229, CS 228), CS 224N, EE364a (convex optimization), CS 231N
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Socher, R. (PI)

CS 224N: Natural Language Processing (LINGUIST 284)

Methods for processing human language information and the underlying computational properties of natural languages. Syntactic and semantic processing from linguistic and algorithmic perspectives. Focus is on modern quantitative techniques in NLP: using large corpora, statistical models for acquisition, translation, and interpretation; and representative systems. Prerequisites: CS124 or CS121/221.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Manning, C. (PI)

CS 224W: Social and Information Networks

(Formerly 322) How do diseases spread? Who are the influencers? How can we predict friends and enemies in a social network? How information flows and mutates as it is passed through networks? Behind each of these questions there is an intricate wiring diagram, a network, that defines the interactions between the components. And we will never understand these questions unless we understand the networks behind them. The course will cover recent research on the structure and analysis of such large social and information networks and on models and algorithms that abstract their basic properties. Class will explore how to practically analyze large-scale network data and how to reason about it through models for network structure and evolution. Topics include methods for link analysis and network community detection, diffusion and information propagation on the web, virus outbreak detection in networks, and connections with work in the social sciences and economics.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Leskovec, J. (PI)

CS 225A: Experimental Robotics

Hands-on laboratory course experience in robotic manipulation. Topics include robot kinematics, dynamics, control, compliance, sensor-based collision avoidance, and human-robot interfaces. Second half of class is devoted to final projects using various robotic platforms to build and demonstrate new robot task capabilities. Previous projects include the development of autonomous robot behaviors of drawing, painting, playing air hocket, yoyo, basketball, ping-pong or xylophone. Prerequisites: 223A or equivalent.
Terms: Aut, Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Khatib, O. (PI)

CS 229: Machine Learning

Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLMs, support vector machines, kernel methods, model/feature selection, learning theory, VC dimension, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: linear algebra, and basic probability and statistics.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Ng, A. (PI)

CS 229T: Statistical Learning Theory (STATS 231)

(Same as STATS 231) How do we formalize what it means for an algorithm to learn from data? This course focuses on developing mathematical tools for answering this question. We will present various common learning algorithms and prove theoretical guarantees about them. Topics include online learning, kernel methods, generalization bounds (uniform convergence), and spectral methods. Prerequisites: A solid background in linear algebra and probability theory, statistics and machine learning ( STATS 315A or CS 229). Convex optimization ( EE 364a) is helpful but not required.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Liang, P. (PI)

CS 231B: The Cutting Edge of Computer Vision

(Formerly 223C) More than one-third of the brain is engaged in visual processing, the most sophisticated human sensory system. Yet visual recognition technology has fundamentally influenced our lives on the same scale and scope as text-based technology has, thanks to Google, Twitter, Facebook, etc. This course is designed for those students who are interested in cutting edge computer vision research, and/or are aspiring to be an entrepreneur using vision technology. Course will guide students through the design and implementation of three core vision technologies: segmentation, detection and classification on three highly practical, real-world problems. Course will focus on teaching the fundamental theory, detailed algorithms, practical engineering insights, and guide them to develop state-of-the-art systems evaluated based on the most modern and standard benchmark datasets. Prerequisites: CS2223B or equivalent and a good machine learning background (i.e. CS221, CS228, CS229). Fluency in Matlab and C/C++.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Li, F. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints