2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

51 - 60 of 215 results for: CS

CS 204: Legal Informatics

Legal informatics based on representation of regulations in computable form. Encoding regulations facilitate creation of legal information systems with significant practical value. Convergence of technological trends, growth of the Internet, advent of semantic web technology, and progress in computational logic make computational law prospects better. Topics: current state of computational law, prospects and problems, philosophical and legal implications. This course is *Cross* listed with LAW 729. Prerequisite: basic concepts of programming.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

CS 205A: Mathematical Methods for Robotics, Vision, and Graphics

Continuous mathematics background necessary for research in robotics, vision, and graphics. Possible topics: linear algebra; the conjugate gradient method; ordinary and partial differential equations; vector and tensor calculus. Prerequisites: 106B or X; MATH 51; or equivalents.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Solomon, J. (PI)

CS 210A: Software Project Experience with Corporate Partners

Two-quarter project course. Focus is on real-world software development. Corporate partners seed projects with loosely defined challenges from their R&D labs; students innovate to build their own compelling software solutions. Student teams are treated as start-up companies with a budget and a technical advisory board comprised of instructional staff and corporate liaisons. Teams will typically travel to the corporate headquarters of their collaborating partner, meaning some teams will travel internationally. Open loft classroom format such as found in Silicon Valley software companies. Exposure to: current practices in software engineering; techniques for stimulating innovation; significant development experience with creative freedoms; working in groups; real-world software engineering challenges; public presentation of technical work; creating written descriptions of technical work. Prerequisites: CS 109 and 110.
Terms: Win | Units: 3-4 | Grading: Letter (ABCD/NP)

CS 210B: Software Project Experience with Corporate Partners

Continuation of CS210A. Focus is on real-world software development. Corporate partners seed projects with loosely defined challenges from their R&D labs; students innovate to build their own compelling software solutions. Student teams are treated as start-up companies with a budget and a technical advisory board comprised of the instructional staff and corporate liaisons. Teams will typically travel to the corporate headquarters of their collaborating partner, meaning some teams will travel internationally. Open loft classroom format such as found in Silicon Valley software companies. Exposure to: current practices in software engineering; techniques for stimulating innovation; significant development experience with creative freedoms; working in groups; real world software engineering challenges; public presentation of technical work; creating written descriptions of technical work. Prerequisites: CS 210A
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)

CS 211: Content Creation in Virtual Reality

Students are immersed in a cutting edge virtual reality development environment consisting of both hardware and software elements. Studentsnwill progress from configuring a comprehensive development environment to designing and implementing networked content in VR. The deep development focus is overlaid with a discussion series with leaders in the VR space to provide both breadth and depth to a student¿s understanding of the VR space. Prerequisites: CS 107 or equivalent. A strong software development background is required that includes comfort with C++. Design experience a plus.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 221: Artificial Intelligence: Principles and Techniques

Artificial intelligence (AI) has had a huge impact in many areas, including medical diagnosis, speech recognition, robotics, web search, advertising, and scheduling. This course focuses on the foundational concepts that drive these applications. In short, AI is the mathematics of making good decisions given incomplete information (hence the need for probability) and limited computation (hence the need for algorithms). Specific topics include search, constraint satisfaction, game playing, Markov decision processes, graphical models, machine learning, and logic. Prerequisites: CS 103 or CS 103B/X, CS 106B or CS 106X, CS 107, and CS 109 (algorithms, probability, and programming experience).
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Liang, P. (PI)

CS 223A: Introduction to Robotics (ME 320)

Robotics foundations in modeling, design, planning, and control. Class covers relevant results from geometry, kinematics, statics, dynamics, motion planning, and control, providing the basic methodologies and tools in robotics research and applications. Concepts and models are illustrated through physical robot platforms, interactive robot simulations, and video segments relevant to historical research developments or to emerging application areas in the field. Recommended: matrix algebra.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Khatib, O. (PI)

CS 224D: Deep Learning for Natural Language Processing

Deep learning approaches have obtained very high performance across many different natural language processing tasks. In this class, students will learn to understand, implement, train, debug, visualize and potentially invent their own neural network models for a variety of language understanding tasks. The course provides a deep excursion from early models to cutting-edge research. Applications will range across a broad spectrum: from simple tasks like part of speech tagging, over sentiment analysis to question answering and machine translation. The final project will involve implementing a complex neural network model and applying it to a large scale NLP problem. Prerequisites: programming abilities (python), linear algebra, Math 21 or equivalent, machine learning background ( CS 229 or similar) Recommended: machine learning ( CS 229, CS 228), CS 224N, EE364a (convex optimization), CS 231N
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Socher, R. (PI)

CS 224N: Natural Language Processing (LINGUIST 284)

Methods for processing human language information and the underlying computational properties of natural languages. Syntactic and semantic processing from linguistic and algorithmic perspectives. Focus is on modern quantitative techniques in NLP: using large corpora, statistical models for acquisition, translation, and interpretation; and representative systems. Prerequisites: CS124 or CS121/221.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Manning, C. (PI)

CS 224W: Social and Information Networks

(Formerly 322) How do diseases spread? Who are the influencers? How can we predict friends and enemies in a social network? How information flows and mutates as it is passed through networks? Behind each of these questions there is an intricate wiring diagram, a network, that defines the interactions between the components. And we will never understand these questions unless we understand the networks behind them. The course will cover recent research on the structure and analysis of such large social and information networks and on models and algorithms that abstract their basic properties. Class will explore how to practically analyze large-scale network data and how to reason about it through models for network structure and evolution. Topics include methods for link analysis and network community detection, diffusion and information propagation on the web, virus outbreak detection in networks, and connections with work in the social sciences and economics.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Leskovec, J. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints