2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 47 results for: GENE

GENE 104Q: Law and the Biosciences

Preference to sophomores. Focus is on human genetics; also assisted reproduction and neuroscience. Topics include forensic use of DNA, genetic testing, genetic discrimination, eugenics, cloning, pre-implantation genetic diagnosis, neuroscientific methods of lie detection, and genetic or neuroscience enhancement. Student presentations on research paper conclusions.
Terms: Win | Units: 3 | UG Reqs: WAY-ER, Writing 2
Instructors: Greely, H. (PI)

GENE 109Q: Genomics: A Technical and Cultural Revolution (BIOMEDIN 109Q)

Preference to sophomores. Concepts of genomics, high-throughput methods of data collection, and computational approaches to analysis of data. The social, ethical, and economic implications of genomic science. Students may focus on computational or social aspects of genomics.
| UG Reqs: Writing 2

GENE 199: Undergraduate Research

Students undertake investigations sponsored by individual faculty members. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit

GENE 203: Advanced Genetics (BIO 203, DBIO 203)

For graduate students in Bioscience programs; may be appropriate for graduate students in other programs. Focused on application of the genetics toolbox to problems in modern biology research. Topics covered include analytic methods, genetic manipulation, genome analysis, and human genetics. Lectures and faculty-led discussion sections with evaluation of papers. Students with minimal experience in genetics should prepare by working out problems in college level textbooks.
Terms: Aut | Units: 4

GENE 206: Epigenetics (BIO 156, BIO 256, PATH 206)

For graduate students in the Biosciences and upper level Biology undergraduates. Mechanisms by which phenotypes not determined by the DNA sequence are stably inherited in successive cell divisions. From the discovery of position-effect variegation in Drosophila in the 1920s to present-day studies of covalent modifications of histones and DNA methylation. Topics include: position effect, gene silencing, heterochromatin, centromere identity, genomic imprinting, histone code, variant histones, and the role of epigenetics in cancer. Prerequisite: BIO41 and BIO42 , or GENE 203, or consent of instructor.
Terms: Spr | Units: 2

GENE 209: Current Topics in Human, Population, and Statistical Genomics

Intensive seminar/workshop. Topics, drawn from current and past literature, may include: assessing and population genetic analysis of genomic variation; genome-to-phenome mapping; reconstructing demographic history from genome sequence data; domestication genomics; host-pathogen genome evolution; detecting signatures of selection; experimental design in human genetics; linkage and association mapping; ethical and social issues in human, plant, and animal genetics research. Emphasis on analysis and logic or experimental and observational genomics research. Faculty-led discussion with evaluation of response papers, problem sets, and intensive course project. May be repeated for credit.
Terms: Spr | Units: 2 | Repeatable for credit

GENE 210: Genomics and Personalized Medicine (DBIO 220)

Principles of genetics underlying associations between genetic variants and disease susceptibility and drug response. Topics include: genetic and environmental risk factors for complex genetic disorders; design and interpretation of genome-wide association studies; pharmacogenetics; full genome sequencing for disease gene discovery; population structure and genetic ancestry; use of personal genetic information in clinical medicine; ethical, legal, and social issues with personal genetic testing. Hands-on workshop making use of personal or publicly available genetic data. Prerequisite: GENE 202 or 203.
Terms: Win, Spr | Units: 3

GENE 211: Genomics

Genome evolution, organization, and function; technical, computational, and experimental approaches; hands-on experience with representative computational tools used in genome science; and a beginning working knowledge of PERL.
Terms: Win | Units: 3

GENE 212: Introduction to Biomedical Informatics Research Methodology (BIOE 212, BIOMEDIN 212, CS 272)

Hands-on software building. Student teams conceive, design, specify, implement, evaluate, and report on a software project in the domain of biomedicine. Creating written proposals, peer review, providing status reports, and preparing final reports. Guest lectures from professional biomedical informatics systems builders on issues related to the process of project management. Software engineering basics. Prerequisites: BIOMEDIN 210, 211, 214, 217 or consent of instructor.
Terms: Spr | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints