2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

61 - 70 of 176 results for: BIO

BIO 150: Human Behavioral Biology (BIO 250, HUMBIO 160)

Multidisciplinary. How to approach complex normal and abnormal behaviors through biology. How to integrate disciplines including sociobiology, ethology, neuroscience, and endocrinology to examine behaviors such as aggression, sexual behavior, language use, and mental illness.
Last offered: Spring 2014 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 152: Imaging: Biological Light Microscopy (MCP 222)

Survey of instruments which use light and other radiation for analysis of cells in biological and medical research. Topics: basic light microscopy through confocal fluorescence and video/digital image processing. Lectures on physical principles; involves partial assembly and extensive use of lab instruments. Lab. Prerequisites: some college physics, Biology core.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci

BIO 153: Cellular Neuroscience: Cell Signaling and Behavior (PSYCH 120)

Neural interactions underlying behavior. Prerequisites: PSYCH 1 or basic biology.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Wine, J. (PI)

BIO 154: Molecular and Cellular Neurobiology

For advanced undergraduate students. Cellular and molecular mechanisms in the organization and functions of the nervous system. Topics: wiring of the neuronal circuit, synapse structure and synaptic transmission, signal transduction in the nervous system, sensory systems, molecular basis of behavior including learning and memory, molecular pathogenesis of neurological diseases. Satisfies Central Menu Areas 2 or 3 for Bio majors. Prerequisite for undergraduates: Biology core or equivalent, or consent of instructors.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci

BIO 156: Epigenetics (BIO 256)

Epigenetics is the process by which phenotypes not determined by the DNA sequence are stably inherited in successive cell divisions. Course will cover the molecular mechanisms governing epigenetics, ranging from the discovery of epigenetic phenomena to present-day studies on the role of chromatin, DNA methylation, and RNA in regulating epigenetics processes. Topics include: position effect gene expression, genome regulation, gene silencing & heterochromatin, histone code, DNA methylation & imprinting, epigenetics & disease, and epigenetic-based therapeutics. Prerequisite: BIO41 and BIO42 or consent of instructor, advanced biology course such as Bio104
Terms: Spr | Units: 2

BIO 158: Developmental Neurobiology (BIO 258)

For advanced undergraduates and coterminal students. The principles of nervous system development from the molecular control of patterning, cell-cell interactions, and trophic factors to the level of neural systems and the role of experience in influencing brain structure and function. Topics: neural induction and patterning cell lineage, neurogenesis, neuronal migration, axonal pathfinding, synapse elimination, the role of activity, critical periods, and the development of behavior. Satisfies Central Menu Areas 2 or 3. Prerequisite: BIO 42 or equivalent.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 160A: Developmental Biology I

Focus is on the molecular mechanisms underlying the generation of diverse cell types and tissues during embryonic and post-embryonic animal development. The role of cell-cell communication in controlling key developmental decisions. Topics covered in this quarter include embryonic axis formation, morphogen signaling, cell type specification and stem cells. Experimental logic and methods of research in developmental biology. Discussions of research papers. Satisfies Central Menu Areas 1 or 2. Prerequisite: Biology core or consent of instructor.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 160B: Developmental Biology II

Continuation of BIO 160A. Focus is on the molecular mechanisms underlying the generation of diverse cell types and tissues during embryonic and post-embryonic animal development. The role of cell-cell communication in controlling key developmental decisions. The topics include sexual control of development, tissue polarity and growth, cell migration, regeneration, and the evolution of developmental mechanisms. Experimental logic and methods of research in developmental biology. Discussions of research papers. Satisfies Central Menu Areas 1 or 2. Prerequisites: Biology Core and 160A, or consent of instructor.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci
Instructors: Simon, M. (PI)

BIO 168: Explorations in Stem Cell Biology

A discussion-based course for advanced undergraduates. The purpose of this course is to introduce students to key topics in stem cell biology and foster the development of strong scientific writing skills. We will review and discuss some landmark and current primary literature in the stem cell field. Topics will include embryonic and adult stem cells, cellular reprogramming and stem cells in disease and regenerative medicine. Students will present a current research paper in their preferred stem cell topic area and compose a novel research proposal. Prerequisites: Biology or Human Biology core. Satisfies WIM in Biology.
Terms: Aut | Units: 3

BIO 174: Human Skeletal Anatomy (ANTHRO 175, ANTHRO 275, BIO 274, HUMBIO 180)

Study of the human skeleton (a. k. a. human osteology), as it bears on other disciplines, including medicine, forensics, archaeology, and paleoanthropology (human evolution). Basic bone biology, anatomy, and development, emphasizing hands-on examination and identification of human skeletal parts, their implications for determining an individual¿s age, sex, geographic origin, and health status, and for the evolutionary history of our species. Three hours of lecture and at least three hours of supervised and independent study in the lab each week.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Klein, R. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints