2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

61 - 70 of 155 results for: MS&E

MS&E 250A: Engineering Risk Analysis

The techniques of analysis of engineering systems for risk management decisions involving trade-offs (technical, human, environmental aspects). Elements of decision analysis; probabilistic risk analysis (fault trees, event trees, systems dynamics); economic analysis of failure consequences (human safety and long-term economic discounting); and case studies such as space systems, nuclear power plants, and medical systems. Public and private sectors. Prerequisites: probability, decision analysis, stochastic processes, and convex optimization.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 250B: Project Course in Engineering Risk Analysis

Students, individually or in groups, choose, define, formulate, and resolve a real risk management problem, preferably from a local firm or institution. Oral presentation and report required. Scope of the project is adapted to the number of students involved. Three phases: risk assessment, communication, and management. Emphasis is on the use of probability for the treatment of uncertainties and sensitivity to problem boundaries. Limited enrollment. Prerequisites: MS&E 250A and consent of instructor.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 251: Stochastic Control (EE 266)

Introduction to stochastic control, with applications taken from a variety of areas including supply-chain optimization, advertising, finance, dynamic resource allocation, caching, and traditional automatic control. Markov decision processes, optimal policy with full state information for finite-horizon case, infinite-horizon discounted, and average stage cost problems. Bellman value function, value iteration, and policy iteration. Approximate dynamic programming. Linear quadratic stochastic control. Formerly EE365. Prerequisites: EE 263, EE 178 or equivalent.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 252: Decision Analysis I: Foundations of Decision Analysis

Coherent approach to decision making, using the metaphor of developing a structured conversation having desirable properties, and producing actional thought that leads to clarity of action. Socratic instruction; computational problem sessions. Emphasis is on creation of distinctions, representation of uncertainty by probability, development of alternatives, specification of preference, and the role of these elements in creating a normative approach to decisions. Information gathering opportunities in terms of a value measure. Relevance and decision diagrams to represent inference and decision. Principles are applied to decisions in business, technology, law, and medicine. See 352 for continuation.
Terms: Aut | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Howard, R. (PI)

MS&E 254: The Ethical Analyst

The ethical responsibility for consequences of professional analysts who use technical knowledge in support of any individual, organization, or government. The means to form ethical judgments; questioning the desirability of physical coercion and deception as a means to reach any end. Human action and relations in society in the light of previous thought, and research on the desired form of social interactions. Attitudes toward ethical dilemmas through an explicit personal code.
Terms: Spr | Units: 1-3 | Grading: Letter or Credit/No Credit
Instructors: Howard, R. (PI)

MS&E 256: Technology Assessment and Regulation of Medical Devices (BIOE 256)

Regulatory approval and reimbursement for new health technologies are critical success factors for product commercialization. This course explores the regulatory and payer environment in the U.S. and abroad, as well as common methods of health technology assessment. Students will learn frameworks to identify factors relevant to the adoption of new health technologies, and the management of those factors in the design and development phases of bringing a product to market through case studies, guest speakers from government (FDA) and industry, and a course project.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Pietzsch, J. (PI)

MS&E 256A: Technology Assessment and Regulation of Medical Devices

Regulatory approval and reimbursement for new medical technologies as a key component of product commercialization. The regulatory and payer environment in the U.S. and abroad, and common methods of health technology assessment. Framework to identify factors relevant to adoption of new medical devices, and the management of those factors in the design and development phases. Case studies; guest speakers from government (FDA) and industry.
Terms: Spr | Units: 1 | Grading: Satisfactory/No Credit
Instructors: Pietzsch, J. (PI)

MS&E 260: Introduction to Operations Management

Operations management focuses on the effective planning, scheduling, and control of manufacturing and service entities. This course introduces students to a broad range of key issues in operations management. Topics include determination of optimal facility location, production planning, optimal timing and sizing of capacity expansion, and inventory control. Prerequisites: basic knowledge of Excel spreadsheets, probability.
Terms: Aut, Sum | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Ashlagi, I. (PI)

MS&E 262: Supply Chain Management

Definition of a supply chain; coordination difficulties; pitfalls and opportunities in supply chain management; inventory/service tradeoffs; performance measurement and incentives. Global supply chain management; mass customization; supplier management. Design and redesign of products and processes for supply chain management; tools for analysis; industrial applications; current industry initiatives. Enrollment limited to 50. Admission determined in the first class meeting. Recommended: 260 or 261.
Terms: not given this year | Units: 3 | Grading: Letter (ABCD/NP)

MS&E 263: Healthcare Operations Management

With healthcare spending in the US exceeding 17% of GDP and growing, improvements in the quality and efficiency of healthcare services are urgently needed. This class focuses on the use of analytical tools to support efficient and effective delivery of health care. Topics include quality control and management, capacity planning, resource allocation, management of patient flows, and scheduling. Prerequisites: basic knowledge of Excel spreadsheets, probability, and optimization.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints