2012-2013 2013-2014 2014-2015 2015-2016 2016-2017
Browse
by subject...
    Schedule
view...
 

101 - 110 of 168 results for: MS&E

MS&E 312: Advanced Methods in Numerical Optimization (CME 334)

Topics include interior-point methods, relaxation methods for nonlinear discrete optimization, sequential quadratic programming methods, optimal control and decomposition methods. Topic chosen in first class; different topics for individuals or groups possible. Individual or team projects. May be repeated for credit.
Terms: Aut | Units: 3 | Repeatable for credit | Grading: Letter or Credit/No Credit

MS&E 313: Almost Linear Time Graph Algorithms (CS 269G)

Over the past decade there has been an explosion in activity in designing new provably efficient fast graph algorithms. Leveraging techniques from disparate areas of computer science and optimization researchers have made great strides on improving upon the best known running times for fundamental optimization problems on graphs, in many cases breaking long-standing barriers to efficient algorithm design. In this course we will survey these results and cover the key algorithmic tools they leverage to achieve these breakthroughs. Possible topics include but are not limited to, spectral graph theory, sparsification, oblivious routing, local partitioning, Laplacian system solving, and maximum flow. Prerequisites: calculus and linear algebra.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Sidford, A. (PI)

MS&E 314: Linear and Conic Optimization with Applications (CME 336)

Linear, semidefinite, conic, and convex nonlinear optimization problems as generalizations of classical linear programming. Algorithms include the interior-point, barrier function, and cutting plane methods. Related convex analysis, including the separating hyperplane theorem, Farkas lemma, dual cones, optimality conditions, and conic inequalities. Complexity and/or computation efficiency analysis. Applications to combinatorial optimization, sensor network localization, support vector machine, and graph realization. Prerequisite: MS&E 211 or equivalent.
Terms: alternate years, given next year | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 316: Discrete Mathematics and Algorithms (CME 305)

Topics: Basic Algebraic Graph Theory, Matroids and Minimum Spanning Trees, Submodularity and Maximum Flow, NP-Hardness, Approximation Algorithms, Randomized Algorithms, The Probabilistic Method, and Spectral Sparsification using Effective Resistances. Topics will be illustrated with applications from Distributed Computing, Machine Learning, and large-scale Optimization. Prerequisites: CS 261 is highly recommended, although not required.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 317: Algorithms for Modern Data Models (CS 263)

We traditionally think of algorithms as running on data available in a single location, typically main memory. In many modern applications including web analytics, search and data mining, computational biology, finance, and scientific computing, the data is often too large to reside in a single location, is arriving incrementally over time, is noisy/uncertain, or all of the above. Paradigms such as map-reduce, streaming, sketching, Distributed Hash Tables, Bulk Synchronous Processing, and random walks have proved useful for these applications. This course will provide an introduction to the design and analysis of algorithms for these modern data models. Prerequisite: Algorithms at the level of CS 261.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 318: Large-Scale Numerical Optimization (CME 338)

The main algorithms and software for constrained optimization emphasizing the sparse-matrix methods needed for their implementation. Iterative methods for linear equations and least squares. The simplex method. Basis factorization and updates. Interior methods. The reduced-gradient method, augmented Lagrangian methods, and SQP methods. Prerequisites: Basic numerical linear algebra, including LU, QR, and SVD factorizations, and an interest in MATLAB, sparse-matrix methods, and gradient-based algorithms for constrained optimization. Recommended: MS&E 310, 311, 312, 314, or 315; CME 108, 200, 302, 304, 334, or 335.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Saunders, M. (PI)

MS&E 319: Approximation Algorithms

Combinatorial and mathematical programming techniques to derive approximation algorithms for NP-hard optimization problems. Prossible topics include: greedy algorithms for vertex/set cover; rounding LP relaxations of integer programs; primal-dual algorithms; semidefinite relaxations. May be repeated for credit. Prerequisites: 112 or CS 161.
Terms: Aut | Units: 3 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: Saberi, A. (PI)

MS&E 321: Stochastic Systems

Topics in stochastic processes, emphasizing applications. Markov chains in discrete and continuous time; Markov processes in general state space; Lyapunov functions; regenerative process theory; renewal theory; martingales, Brownian motion, and diffusion processes. Application to queueing theory, storage theory, reliability, and finance. Prerequisites: 221 or STATS 217; MATH 113, 115. (Glynn)
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 322: Stochastic Calculus and Control

Ito integral, existence and uniqueness of solutions of stochastic differential equations (SDEs), diffusion approximations, numerical solutions of SDEs, controlled diffusions and the Hamilton-Jacobi-Bellman equation, and statistical inference of SDEs. Applications to finance and queueing theory. Prerequisites: 221 or STATS 217: MATH 113, 115.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

MS&E 324: Stochastic Methods in Engineering (CME 308, MATH 228)

The basic limit theorems of probability theory and their application to maximum likelihood estimation. Basic Monte Carlo methods and importance sampling. Markov chains and processes, random walks, basic ergodic theory and its application to parameter estimation. Discrete time stochastic control and Bayesian filtering. Diffusion approximations, Brownian motion and an introduction to stochastic differential equations. Examples and problems from various applied areas. Prerequisites: exposure to probability and background in analysis.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Glynn, P. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints