2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 60 results for: EE

EE 300: Master's Thesis and Thesis Research

Independent work under the direction of a department faculty. Written thesis required for final letter grade. The continuing grade 'N' is given in quarters prior to thesis submission. See 390 if a letter grade is not appropriate. Course may be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

EE 301: Introductory Research Seminar in Electrical Engineering

The EE 301 seminar course is offered primarily for incoming EE PhD students; however, all graduate or undergraduate students may enroll, and all students and faculty in the Department are welcome to attend. EE faculty members present seminars on their research, giving new PhD students an overview of research opportunities across the Department.
Terms: Aut | Units: 1 | Repeatable 4 times (up to 4 units total)
Instructors: Pilanci, M. (PI)

EE 309A: Semiconductor Memory Devices and Circuit Design

The functionality and performance of ULSI systems are increasingly dependent upon the characteristics of the memory subsystem. This course introduces students to various semiconductor memory devices: SRAM, DRAM and FLASH, that are used in today's memory subsystems. The course will cover various aspects of semiconductor memories, including basic operation principles, device design considerations, device scaling, device fabrication, memory array architecture, and addressing and readout circuits. The course will also introduce students to recent research in near- and in-memory computing using these memory technologies. The next course is this series is EE 309B, which talks about emerging non-volatile memory devices and circuit design. Pre-requisite: EE 216. Preferred: EE 316.
Terms: Aut | Units: 3

EE 310: SystemX: Ubiquitous Sensing, Computing and Communication Seminar

This is a seminar course with invited speakers. Sponsored by Stanford's SystemX Alliance, the talks will cover emerging topics in contemporary hardware/software systems design. Special focus will be given to the key building blocks of sensors, processing elements and wired/wireless communications, as well as their foundations in semiconductor technology, SoC construction, and physical assembly as informed by the SystemX Focus Areas. The seminar will draw upon distinguished engineering speakers from both industry and academia who are involved at all levels of the technology stack and the applications that are now becoming possible. May be repeat for credit
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit

EE 317: Special Topics on Wide Bandgap Materials and Devices

Wide-bandgap (WBG) semiconductors present a pathway to push the limits of efficiency in optoelectronics and electronics enabling significant energy savings, offering new and compact architecture, and more functionality. We will first study the examples set by GaN and SiC in lighting, radiofrequency and power applications, then use it to explore new materials like Ga2O3, AlN and diamond to understand their potential to drive the future semiconductor industry. The term papers will include a short project that may require simulation to conduct device design and analysis. Prerequisites: EE 216 or EE 218
Terms: Aut | Units: 3

EE 329: The Electronic Structure of Surfaces and Interfaces (PHOTON 329)

Physical concepts and phenomena for surface science techniques probing the electronic and chemical structure of surfaces, interfaces and nanomaterials. Microscopic and atomic models of microstructures; applications including semiconductor device technology, catalysis and energy. Physical processes of UV and X-ray photoemission spectroscopy, Auger electron spectroscopy, surface EXAFS, low energy electron diffraction, electron/photon stimulated ion desorption, scanning tunneling spectroscopy, ion scattering, energy loss spectroscopy and related imaging methods; and experimental aspects of these surface science techniques. Prerequisites: PHYSICS 70 and MATSCI 199/209, or consent of instructor.
Terms: Aut | Units: 3
Instructors: Pianetta, P. (PI)

EE 334: Micro and Nano Optical Device Design

Lecture and project course on design and analysis of optical devices with emphasis on opportunities and challenges created by scaling to the micrometer and nanometer ranges. The emphasis is on fundamentals, combined with some coverage of practical implementations. Prerequisite: EE 242 or equivalent
Terms: Aut | Units: 3

EE 336: Nanophotonics (MATSCI 346)

Recent developments in micro- and nanophotonic materials and devices. Basic concepts of photonic crystals. Integrated photonic circuits. Photonic crystal fibers. Superprism effects. Optical properties of metallic nanostructures. Sub-wavelength phenomena and plasmonic excitations. Meta-materials. Prerequisite: Electromagnetic theory at the level of 242.
Terms: Aut | Units: 3

EE 348: Advanced Optical Fiber Communications

Optical amplifiers: gain, saturation, noise. Semiconductor amplifiers. Erbium-doped fiber amplifiers. System applications: preamplified receiver performance, amplifier chains. Raman amplifiers, lumped vs. distributed amplification. Group-velocity dispersion management: dispersion-compensating fibers, filters, gratings. Interaction of dispersion and nonlinearity, dispersion maps. Multichannel systems. Wavelength-division multiplexing components: filters, multiplexers. WDM systems, crosstalk. Time, subcarrier, code and polarization-division multiplexing. Comparison of modulation techniques: differential phase-shift keying, phase-shift keying, quadrature-amplitude modulation. Comparison of detection techniques: noncoherent, differentially coherent, coherent. Prerequisite: 247.
Terms: Aut | Units: 3
Instructors: Kahn, J. (PI)

EE 356A: Resonant Converters

Miniaturization of efficient power converters remain a challenge in power electronics whose goal is improving energy use and reducing waste. In this course, we will study the design of Resonant converters which are capable of operating at higher frequencies than their 'hard-switch' counterparts. Resonant converter are found in high performance applications where high control bandwidth and high power density are required. We will also explore practical design issues and trade off in selecting converter topologies in high performance applications. Prerequisites: EE153/ EE253.
Terms: Aut | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints