2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 195 results for: ME

ME 1: Introduction to Mechanical Engineering

This course is intended to be the starting point for Mechanical Engineering majors. It will cover the concepts, engineering methods, and common tools used by mechanical engineers while introducing the students to a few interesting devices. We will discuss how each device was conceived, design challenges that arose, application of analytical tools to the design, and production methods. Main class sections will include lectures, demonstrations, and in-class group exercises. Lab sections will develop specific skills in freehand sketching and computational modeling of engineering systems. Prerequisites: Physics: Mechanics, and first quarter Calculus.
Terms: Aut, Spr | Units: 3 | UG Reqs: WAY-AQR

ME 14AX: Design for Silver and Bronze

This class will teach piercing saw work in sterling silver, light forming, embossing and potentially enameling. Equal attention will be given to technique and manufacturing. Students will receive a tool kit and materials prior to the start of the Arts Intensive. Sara and Amanda have been teaching ME298: Silversmithing in Design at Stanford for 17 years, they are full time designers at RedStart Design, LLC and also Lecturers in Design in the Mechanical Engineering Department.
Terms: Sum | Units: 2 | UG Reqs: WAY-CE

ME 23N: Soft Robots for Humanity

While traditional robotic manipulators are constructed from rigid links and simple joints, a new generation of robotic devices are soft, using flexible, deformable materials. Students in this class will get hands-on experience building soft robots using various materials, actuators, and programming to create robots that perform different tasks. Through this process, students will gain an appreciation for the capabilities and limitations of bio-inspired systems, use design thinking to create novel robotic solutions, and gain practical interdisciplinary engineering skills.
Last offered: Autumn 2019

ME 30: Engineering Thermodynamics

The basic principles of thermodynamics are introduced in this course. Concepts of energy and entropy from elementary considerations of the microscopic nature of matter are discussed. The principles are applied in thermodynamic analyses directed towards understanding the performances of engineering systems. Methods and problems cover socially responsible economic generation and utilization of energy in central power generation plants, solar systems, refrigeration devices, and automobile, jet and gas-turbine engines.
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA

ME 70: Introductory Fluids Engineering

Elements of fluid mechanics as applied to engineering problems. Equations of motion for incompressible flow. Hydrostatics. Control volume laws for mass, momentum, and energy. Bernoulli equation. Differential equations of fluid flow. Euler equations. Dimensional analysis and similarity. Internal flows. Introductory external boundary layer flows. Introductory lift and drag. ENGR14 and ME30 required.
Terms: Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci

ME 80: Mechanics of Materials

Mechanics of materials and deformation of structural members. Topics include stress and deformation analysis under axial loading, torsion and bending, column buckling and pressure vessels. Introduction to stress transformation and multiaxial loading. Prerequisite: ENGR 14.
Terms: Aut, Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR

ME 102: Foundations of Product Realization

Students develop the language and toolset to transform design concepts into tangible models/prototypes that cultivate the emergence of mechanical aptitude. Visual communication tools such as sketching, orthographic projection, and 2D/3D design software are introduced in the context of design and prototyping assignments. Instruction and practice with hand, powered, and digital prototyping tools in the Product Realization Lab support students implementation and iteration of physical project work. Project documentation, reflection, and in-class presentations are opportunities for students to find their design voice and practice sharing it with others. Prerequisite: ME 1 or ME 101 or consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 3

ME 103: Product Realization: Design and Making

ME103 is designed for sophomores or juniors in mechanical engineering or product design. During the course students will develop a point of view around a product or object of their own design that is meaningful to them in some way. Students will evolve their ideas through a series of prototypes of increasing fidelity ¿ storyboards, sketches, CAD models, rough prototypes, 3D printed models, etc. The final project will be a high-fidelity product or object made with the PRL's manufacturing resources, giving students a sound foundation in fabrication processes, design guidelines, tolerancing, and material choices. The student's body of work will be presented in a large public setting, Meet the Makers, through a professional grade portfolio that shares and reflects on the student's product realization adventure. ME103 assumes familiarity with product realization fundamentals, CAD and 3D printing. Prerequisite for ME103: ME102.
Terms: Aut, Win, Spr | Units: 4

ME 104: Mechanical Systems Design

How to design mechanical systems through iterative application of intuition, brainstorming, analysis, computation and prototype testing. Design of custom mechanical components, selection of common machine elements, and selection of electric motors and transmission elements to meet performance, efficiency and reliability goals. Emphasis on high-performance systems. Independent and team-based design projects. Prerequisites: PHYSICS 41; ENGR 14; ME 80; ME 102; ME 103 or 203. Prerequisites strictly enforced. Must have PRL pass. Must attend lecture. Recommended: ENGR 15; CS 106A; ME 128 or ME 318.
Terms: Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 105: Designing for Impact

This course will introduce the design thinking process and skills, and explore unique challenges of solving problems and initiating action for public good. Design skills such as need-finding, insight development, and prototyping will be learned through hands-on project work with a community partner and a particular emphasis on the elements required to be effective in the social sector. This is a Cardinal Course certified by the Haas Center for Public Service. ME101 recommended.
Last offered: Spring 2020
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints