2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

101 - 110 of 127 results for: STATS

STATS 333: Modern Spectral Analysis

Traditional spectral analysis encompassed Fourier methods and their elaborations, under the assumption of a simple superposition of sinusoids, independent of time. This enables development of efficient and effective computational schemes, such as the FFT. Since many systems change in time, it becomes of interest to generalize classical spectral analysis to the time-varying setting. In addition, classical methods suffer from resolution limits which we hope to surpass. In this topics course, we follow two threads. On the one hand, we consider the ¿estimation of instantaneous frequencies and decomposition of source signals, which may be time-varying¿. The thread begins with the empirical mode decomposition (EMD) for non-stationary signal decomposition into intrinsic mode functions (IMF¿s), introduced by N. Huang et al [1], together with its machinery of the sifting process and computation of the Hilbert spectrum, resulting in the so-called adaptive harmonic model (AHM).nNext, this thread considers the wavelet synchrosqueezing transform (WSST) proposed by Daubechies et al [2], which attempts to estimate instantaneous frequencies (IF¿s), via the frequency re-assignment (FRA) rule, that facilitaes non-stationary signal decomposition. In reference [3], a real-time method is proposed for computing the FRA rule; and in reference [4], the exact number of AHM components is determined with more precise estimation of the IF¿s, for more accurate extraction of the signal components and polynomial-like trend. nIn another thread, recent developments in optimization have been applied to obtain time-varying spectra or very high-resolution spectra; in particular, references [5]-[8] give examples of recent results where convex estimation is applied to obtain new and more highly resolved spectral estimates, some with time-varying structure.
Last offered: Spring 2015

STATS 338: Topics in Biostatistics

Data monitoring and interim analysis of clinical trials. Design of Phase I, II, III trials. Survival analysis. Longitudinal data analysis.
Last offered: Autumn 2009

STATS 341: Applied Multivariate Statistics

Theory, computational aspects, and practice of a variety of important multivariate statistical tools for data analysis. Topics include classicalnmultivariate Gaussian and undirected graphical models, graphical displays. PCA, SVD and generalizations including canonical correlation analysis, linear discriminant analysis, correspondence analysis, with focus on recent variants. Factor analysis and independent component analysis. Multidimensional scalingnand its variants (e.g. Isomap, spectral clustering). Students are expected to program in R. Prerequisite: STATS 305 or equivalent.
Last offered: Spring 2012

STATS 344: Introduction to Statistical Genetics (GENE 244)

Statistical methods for analyzing human genetics studies of Mendelian disorders and common complex traits. Probable topics include: principles of population genetics; epidemiologic designs; familial aggregation; segregation analysis; linkage analysis; linkage-disequilibrium-based association mapping approaches; and genome-wide analysis based on high-throughput genotyping platforms. Prerequisite: STATS 116 or equivalent or consent of instructor.
Last offered: Spring 2014

STATS 345: Statistical and Machine Learning Methods for Genomics (BIO 268, BIOMEDIN 245, CS 373, GENE 245)

Introduction to statistical and computational methods for genomics. Sample topics include: expectation maximization, hidden Markov model, Markov chain Monte Carlo, ensemble learning, probabilistic graphical models, kernel methods and other modern machine learning paradigms. Rationales and techniques illustrated with existing implementations used in population genetics, disease association, and functional regulatory genomics studies. Instruction includes lectures and discussion of readings from primary literature. Homework and projects require implementing some of the algorithms and using existing toolkits for analysis of genomic datasets.
Terms: Spr | Units: 3

STATS 350: Topics in Probability Theory: Probabilistic Concepts in Statistical Physics and Information Theory

Concentration of measure techniques. Mean field models for disordered systems: infinite size limit, computing the free energy, ultrametricity, dynamics. Interpolation techniques and infinite size limit in information theory and coding. May be repeated once for credit. Prerequisite: 310A or equivalent.
Last offered: Spring 2014 | Repeatable 2 times (up to 6 units total)

STATS 351: Random Walks, Networks and Environment

Selected material about probability on trees and networks, random walk in random and non-random environments, percolation and related interacting particle systems. Prerequisite: Exposure to measure theoretic probability and to stochastic processes.
Last offered: Spring 2014

STATS 351A: An Introduction to Random Matrix Theory (MATH 231A)

Patterns in the eigenvalue distribution of typical large matrices, which also show up in physics (energy distribution in scattering experiments), combinatorics (length of longest increasing subsequence), first passage percolation and number theory (zeros of the zeta function). Classical compact ensembles (random orthogonal matrices). The tools of determinental point processes.
Last offered: Autumn 2008

STATS 355: Observational Studies (HRP 255)

This course will cover statistical methods for the design and analysis of observational studies. Topics for the course will include the potential outcomes framework for causal inference; randomized experiments; methods for controlling for observed confounders in observational studies; sensitivity analysis for hidden bias; instrumental variables; tests of hidden bias; coherence; and design of observational studies.
Last offered: Winter 2013

STATS 360: Advanced Statistical Methods for Earth System Analysis (ESS 260)

Introduction for graduate students to important issues in data analysis relevant to earth system studies. Emphasis on methodology, concepts and implementation (in R), rather than formal proofs. Likely topics include the bootstrap, non-parametric methods, regression in the presence of spatial and temporal correlation, extreme value analysis, time-series analysis, high-dimensional regressions and change-point models. Topics subject to change each year. Prerequisites: STATS 110 or equivalent.
Terms: Win | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints