2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

191 - 200 of 291 results for: ME

ME 346A: Introduction to Statistical Mechanics

The main purpose of this course is to provide students with enough statistical mechanics background to the Molecular Simulations classes ( ME 346B,C), including the fundamental concepts such as ensemble, entropy, and free energy, etc. The main theme of this course is how the laws at the macroscale (thermodynamics) can be obtained by analyzing the spontaneous fluctuations at the microscale (dynamics of molecules). Topics include thermodynamics, probability theory, information entropy, statistical ensembles, phase transition and phase equilibrium. Recommended: PHYSICS 110 or equivalent.
Terms: Spr | Units: 3

ME 346B: Introduction to Molecular Simulations

Algorithms of molecular simulations and underlying theories. Molecular dynamics, time integrators, modeling thermodynamic ensembles (NPT, NVT), free energy, constraints. Monte Carlo simulations, parallel tempering. Stochastic equations, Langevin and Brownian dynamics. Applications in solids, liquids, and biomolecules (proteins). Programming in Matlab.
Last offered: Spring 2014

ME 346C: Advanced Techniques for Molecular Simulations

Advanced methods for computer simulations of solids and molecules. Methods for long-range force calculation, including Ewald methods and fast multipole method. Methods for free energy calculation, such as thermodynamic integration. Methods for predicting rates of rare events (e.g. nucleation), including nudged elastic band method and umbrella sampling method. Students will work on projects in teams.
Last offered: Summer 2012

ME 347: Mathematical Theory of Dislocations

The mathematical theory of straight and curvilinear dislocations in linear elastic solids. Stress fields, energies, and Peach-Koehler forces associated with these line imperfections. Anisotropic effects, Green's function methods, and the geometrical techniques of Brown and Indenborn-Orlov for computing dislocation fields and for studying dislocation interactions. Continuously distributed dislocations and cracks and inclusions.
Last offered: Spring 2011

ME 348: Experimental Stress Analysis

Theory and applications of photoelasticity, strain sensors, and holographic interferometry. Comparison of test results with theoretical predictions of stress and strain. Discussion of other methods (optical fiber strain sensors, digital image correlation, thermoelasticity, brittle coating, Moire interferometry, residual stress determination). Six labs plus mini-project. Limited enrollment. Lab fee.
Terms: Spr | Units: 3

ME 349: Variational Methods in Elasticity and Plate Theory

An introduction to variational calculus methods and their applications to the theories of elasticity and plates.
Last offered: Spring 2010

ME 350A: Design @ the Intersection of Science, Technology, and Entrepreneurship

This 1 credit class is for graduate students who are passionate about turning their research into a product or service. This is a chance to explore the potential impact of your work beyond your lab or research group. We are looking for students from the sciences, engineering, or mathematics, or students who have business acumen or start-up experience focused on technology driven companies. If you want to get out of your lab, away from your machine, and start to design your future come join us. The class will begin your journey from research to product conceptualization and user centered design through exercises and group activities. We¿ll meet once a week over the quarter in 10 self-contained 2 hour workshops where students will focus on their own work as well as explore the practical applications of fellow students¿ ideas, experience team formation and collaboration, and begin to explore product and service design. Aside from class time you will need to commit up to one hour per week outside the class on customer and market exploration. Advisors from industry and academia will mentor student teams. The class will be structured for individuals with team formation optional.
Last offered: Autumn 2014

ME 351A: Fluid Mechanics

Exact and approximate analysis of fluid flow covering kinematics, global and differential equations of mass, momentum, and energy conservation. Forces and stresses in fluids. Euler¿s equations and the Bernoulli theorem applied to inviscid flows. Vorticity dynamics. Topics in irrotational flow: stream function and velocity potential for exact and approximate solutions; superposition of solutions; complex potential function; circulation and lift. Some boundary layer concepts.
Terms: Aut | Units: 3

ME 351B: Fluid Mechanics

Laminar viscous fluid flow. Governing equations, boundary conditions, and constitutive laws. Exact solutions for parallel flows. Creeping flow limit, lubrication theory, and boundary layer theory including free-shear layers and approximate methods of solution; boundary layer separation. Introduction to stability theory and transition to turbulence, and turbulent boundary layers. Prerequisite: 351A.
Terms: Win | Units: 3

ME 352A: Radiative Heat Transfer

The fundamentals of thermal radiation heat transfer; blackbody radiation laws; radiative properties of non-black surfaces; analysis of radiative exchange between surfaces and in enclosures; combined radiation, conduction, and convection; radiative transfer in absorbing, emitting, and scattering media. Advanced material for students with interests in heat transfer, as applied in high-temperature energy conversion systems. Take 352B,C for depth in heat transfer. Prerequisites: graduate standing and undergraduate course in heat transfer. Recommended: computer skills.
Last offered: Autumn 2014
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints