2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 120 results for: PHYSICS

PHYSICS 106: Experimental Methods in Quantum Physics

Experimental physics lab course aimed at providing an understanding of and appreciation for experimental methods in physics, including the capabilities and limitations, both fundamental and technical. Students perform experiments that use optics, lasers, and electronics to measure fundamental constants of nature, perform measurements at the atomic level, and analyze results. Goals include developing an understanding of measurement precision and accuracy through concepts of spectral-analysis of coherent signals combined with noise. We explore the fundamental limits to measurement set by thermal noise at finite temperature, as well as optical shot-noise in photo-detection that sets the standard quantum limit in detecting light. Spectroscopy of light emitted from atoms reveals the quantum nature of atomic energy levels, and when combined with theoretical models provides information on atomic structure and fundamental constants of nature (e.g. the fine structure constant that characterizes more »
Experimental physics lab course aimed at providing an understanding of and appreciation for experimental methods in physics, including the capabilities and limitations, both fundamental and technical. Students perform experiments that use optics, lasers, and electronics to measure fundamental constants of nature, perform measurements at the atomic level, and analyze results. Goals include developing an understanding of measurement precision and accuracy through concepts of spectral-analysis of coherent signals combined with noise. We explore the fundamental limits to measurement set by thermal noise at finite temperature, as well as optical shot-noise in photo-detection that sets the standard quantum limit in detecting light. Spectroscopy of light emitted from atoms reveals the quantum nature of atomic energy levels, and when combined with theoretical models provides information on atomic structure and fundamental constants of nature (e.g. the fine structure constant that characterizes the strength of all electro-magnetic interactions, and the ratio of the electron mass to the proton mass, me/mp. Experiments may include laser spectroscopy to determine the interatomic potential, effective spring constant, and binding energy of a diatomic molecule, or measure the speed of light. This course will provide hands-on experience with semiconductor diode lasers, basic optics, propagation and detection of optical beams, and related electronics and laboratory instrumentation. For lab notebooks the class uses an integrated online environment for data analysis, curve fitting, (system is based on Jupyter notebooks, Python, and document preparation). Prerequisites: PHYSICS 40 series and PHYSICS 70, or 60 series, PHYSICS 120, PHYSICS 130; some familiarity with basic electronics is helpful but not required. Very basic programming in Python is needed, but background with Matlab, Origin, or similar software should be sufficient to come up to speed for the data analysis.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR

PHYSICS 107: Intermediate Physics Laboratory II: Experimental Techniques and Data Analysis

Experiments on lasers, Gaussian optics, and atom-light interaction, with emphasis on data and error analysis techniques. Students describe a subset of experiments in scientific paper format. Prerequisites: completion of PHYSICS 40 or PHYSICS 60 series, and PHYSICS 70 and PHYSICS 105. Recommended pre- or corequisites: PHYSICS 120 and 130. WIM
Last offered: Winter 2020 | UG Reqs: WAY-AQR, WAY-SMA

PHYSICS 108: Advanced Physics Laboratory: Project

Have you ever wanted to dream up a research question, then design, execute, and analyze an experiment to address it, together with a small group of your fellow students? This is an accelerated, guided experimental research experience, resembling real frontier research. Phenomena that have been studied include the magnetization of ferromagnets, the quantum hall effect in graphene, interference in superconducting circuits, loss in nanomechanical resonators, and superfluidity in helium. But most projects pursued (drawn from condensed matter and recently also particle physics) have never been done in the class before. Our equipment and apparatus for Physics 108 are very flexible, and not standardized like in most other lab classes. We provide substantial resources to help your team. Often, with instructors' help, students obtain unique samples from Stanford research groups. Prerequisite: PHYSICS 104, or other experience in electronics. Suggested but less critical: Physics 130 (many phen more »
Have you ever wanted to dream up a research question, then design, execute, and analyze an experiment to address it, together with a small group of your fellow students? This is an accelerated, guided experimental research experience, resembling real frontier research. Phenomena that have been studied include the magnetization of ferromagnets, the quantum hall effect in graphene, interference in superconducting circuits, loss in nanomechanical resonators, and superfluidity in helium. But most projects pursued (drawn from condensed matter and recently also particle physics) have never been done in the class before. Our equipment and apparatus for Physics 108 are very flexible, and not standardized like in most other lab classes. We provide substantial resources to help your team. Often, with instructors' help, students obtain unique samples from Stanford research groups. Prerequisite: PHYSICS 104, or other experience in electronics. Suggested but less critical: Physics 130 (many phenomena you might study build on quantum mechanics) and Physics 106 (experience with data analysis and useful measurement tools: lock-in amplifier, spectrum analyzer.) We recommend taking this class in junior year if possible, as it can inform post-graduation decisions and can empower the professor to write a powerful letter of recommendation.
Terms: Spr | Units: 5 | UG Reqs: WAY-SMA, WAY-AQR | Repeatable 2 times (up to 10 units total)

PHYSICS 110: Advanced Mechanics (PHYSICS 210)

Lagrangian and Hamiltonian mechanics. Principle of least action, Euler-Lagrange equations. Small oscillations and beyond. Symmetries, canonical transformations, Hamilton-Jacobi theory, action-angle variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical systems, attractors, chaotic motion. Undergraduates register for Physics 110 (4 units). Graduates register for Physics 210 (3 units). Prerequisites: MATH 131P or PHYSICS 111. Recommended prerequisite: PHYSICS 130.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

PHYSICS 111: Partial Differential Equations of Mathematical Physics

This course is intended to introduce students to the basic techniques for solving partial differential equations that commonly occur in classical mechanics, electromagnetism, and quantum mechanics. Tools that will be developed include separation of variables, Fourier series and transforms, and Sturm-Liouville theory. Examples (including the heat equation, Laplace equation, and wave equation) will be drawn from different areas of physics. Through examples, students will gain a familiarity with some of the famous special functions arising in mathematical physics. Prerequisite: MATH 53 or 63. Completing PHYSICS 40 or 60 sequences helpful.
Terms: Aut | Units: 4

PHYSICS 112: Mathematical Methods for Physics

The course will focus on the theory of functions of a complex variable - with broad implications in many areas of physics. As time allows, we will also cover the basics of group theory and the theory of group representations, with focus on symmetry groups that arise in various physical settings. Prerequisites: MATH 53 or equivalent and Physics 111 or the equivalent.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR

PHYSICS 113: Computational Physics

Numerical methods for solving problems in mechanics, astrophysics, electromagnetism, quantum mechanics, and statistical mechanics. Methods include numerical integration; solutions of ordinary and partial differential equations; solutions of the diffusion equation, Laplace's equation, and Poisson's equation with various methods; statistical methods including Monte Carlo techniques; matrix methods and eigenvalue problems. A short introduction to Python, which is used for class examples and active learning notebooks. Independent class projects allow deep explorations of course topics and make up a significant component of the course grade. No prerequisites but some previous programming experience is advisable.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-FR

PHYSICS 120: Intermediate Electricity and Magnetism I

Vector analysis. Electrostatic fields, including boundary-value problems and multipole expansion. Dielectrics, static and variable magnetic fields, magnetic materials. Maxwell's equations. Prerequisites: PHYSICS 81; MATH 52 and MATH 53. Pre- or corequisite: PHYS 111 or MATH 131P or MATH 173 or Math 220.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

PHYSICS 121: Intermediate Electricity and Magnetism II

Conservation laws and electromagnetic waves, Poynting's theorem, tensor formulation, potentials, and fields. Plane-wave problems (free space, conductors and dielectric materials, boundaries). Dipole and quadruple radiation. Special relativity and transformation between electric and magnetic fields. Prerequisites: PHYS 120 and PHYS 111 or MATH 131P or MATH 173;
Terms: Spr | Units: 4

PHYSICS 130: Quantum Mechanics I

The origins of quantum mechanics and wave mechanics. Schr¿dinger equation and solutions for one-dimensional systems. Commutation relations. Generalized uncertainty principle. Time-energy uncertainty principle. Separation of variables and solutions for three-dimensional systems; application to a hydrogen atom. Spherically symmetric potentials and angular momentum eigenstates. Spin angular momentum. Addition of angular momentum. Prerequisites: ( PHYSICS 65 or PHYSICS 70 or PHYSICS 71) and ( PHYSICS 111 or MATH 131P or MATH 173 or MATH 220) and PHYSICS 120.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, GER: DB-NatSci, WAY-FR
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints