2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 126 results for: EARTHSYS

EARTHSYS 142: Remote Sensing of Land (EARTHSYS 242, EESS 162, EESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Win | Units: 4
Instructors: Lambin, E. (PI)

EARTHSYS 144: Fundamentals of Geographic Information Science (GIS) (EESS 164)

Survey of geographic information including maps, satellite imagery, and census data, approaches to spatial data, and tools for integrating and examining spatially-explicit data. Emphasis is on fundamental concepts of geographic information science and associated technologies. Topics include geographic data structure, cartography, remotely sensed data, statistical analysis of geographic data, spatial analysis, map design, and geographic information system software. Computer lab assignments.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci

EARTHSYS 146A: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (EARTHSYS 246A, EESS 146A, EESS 246A, GEOPHYS 146A, GEOPHYS 246A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Win | Units: 3
Instructors: Thomas, L. (PI)

EARTHSYS 146B: Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation (EARTHSYS 246B, EESS 146B, EESS 246B, GEOPHYS 146B, GEOPHYS 246B)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the large-scale ocean circulation. This course will give an overview of the structure and dynamics of the major ocean current systems that contribute to the meridional overturning circulation, the transport of heat, salt, and biogeochemical tracers, and the regulation of climate. Topics include the tropical ocean circulation, the wind-driven gyres and western boundary currents, the thermohaline circulation, the Antarctic Circumpolar Current, water mass formation, atmosphere-ocean coupling, and climate variability. Prerequisites: EESS 146A or EESS 246A, or CEE 164 or CEE 262D, or consent of instructor.
Terms: Spr | Units: 3
Instructors: Thomas, L. (PI)

EARTHSYS 14SI: Human and Environmental Rights from Farm to Fork

This course aims to understand the environmental and human rights implications of our modern globalized food system-from farm, to factory, to international commerce, and finally, to fork. Focus will be on the labor and environmental conditions of industrial agriculture, working conditions and environmental consequences of processing factories, the implications of international food commerce, the modern obesity crisis, and emerging solutions that aim to correct these problems.

EARTHSYS 151: Biological Oceanography (EARTHSYS 251, EESS 151, EESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (EESS/ EARTHSYS 152/252). Prerequisites: BIO 43 and EESS 8 or equivalent.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA

EARTHSYS 152: Marine Chemistry (EARTHSYS 252, EESS 152, EESS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (EESS/ EARTHSYS 151/251)
Terms: Spr | Units: 3-4 | UG Reqs: WAY-AQR, WAY-SMA

EARTHSYS 155: Science of Soils (EESS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA, GER: DB-NatSci
Instructors: Fendorf, S. (PI)

EARTHSYS 156: Soil and Water Chemistry (EARTHSYS 256, EESS 156, EESS 256)

(Graduate students register for 256.) Practical and quantitative treatment of soil processes affecting chemical reactivity, transformation, retention, and bioavailability. Principles of primary areas of soil chemistry: inorganic and organic soil components, complex equilibria in soil solutions, and adsorption phenomena at the solid-water interface. Processes and remediation of acid, saline, and wetland soils. Recommended: soil science and introductory chemistry and microbiology.
Last offered: Winter 2014 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 156M: Marine Resource Economics and Conservation (ECON 156, HUMBIO 111M)

Economic and ecological frameworks to understand the causes of and potential solutions to marine resource degradation. Focus on conservation of marine biodiversity and ecosystem-based management. Applications include: commercial and recreational fisheries, marine reserves, and offshore energy production.
Last offered: Spring 2013 | UG Reqs: WAY-SI
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints