2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

21 - 30 of 73 results for: MATSCI

MATSCI 171: Nanocharacterization Laboratory (MATSCI 161)

Students use optical microscopy, x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy and other techniques to characterize recently discovered perovskite semiconductors that can be used to make highly efficient solar cells. This course fulfills the Writing in the Major Requirement for MSE undergrads. Instruction on writing, statistics, generating effective plots with curve fits, using databases to find information and giving oral scientific presentations is given. Instruction on characterization techniques is provided, but it is expected that the students will have already taken a course like MATSCI 153 that covers the fundamentals of the techniques. The emphasis on this course is on doing nanocharacterization experiments and writing up the results. Undergraduates register for 161 for 4 units; graduates register for 171 for 3 units.
Terms: Win | Units: 3-4
Instructors: McGehee, M. (PI)

MATSCI 172: X-Ray Diffraction Laboratory (MATSCI 162, PHOTON 172)

Experimental x-ray diffraction techniques for microstructural analysis of materials, emphasizing powder and single-crystal techniques. Diffraction from epitaxial and polycrystalline thin films, multilayers, and amorphorous materials using medium and high resolution configurations. Determination of phase purity, crystallinity, relaxation, stress, and texture in the materials. Advanced experimental x-ray diffraction techniques: reciprocal lattice mapping, reflectivity, and grazing incidence diffraction. Enrollment limited to 20. Undergraduates register for 162 for 4 units; graduates register for 172 for 3 units.
Terms: Win | Units: 3-4

MATSCI 173: Mechanical Behavior Laboratory (MATSCI 163)

Experimental techniques for the study of the mechanical behavior of engineering materials in bulk and thin film form, including tension testing, nanoindentation, and wafer curvature stress analysis. Metallic and polymeric systems. Prerequisite: ENGR 50. Undergraduates register for 163 in 4 units; graduates register in 173 for 3 units.
Terms: Aut | Units: 3-4
Instructors: Kempen, P. (PI)

MATSCI 174: Electronic and Photonic Materials and Devices Laboratory (MATSCI 164)

Lab course. Current electronic and photonic materials and devices. Device physics and micro-fabrication techniques. Students design, fabricate, and perform physical characterization on the devices they have fabricated. Established techniques and materials such as photolithography, metal evaporation, and Si technology; and novel ones such as soft lithography and organic semiconductors. Prerequisite: 152 or 199 or consent of instructor. Undergraduates register in 164 for 4 units; graduates register in 174 for 3 units.
Terms: Aut | Units: 3-4
Instructors: Salleo, A. (PI)

MATSCI 175: Nanoscale Materials Physics Computation Laboratory (MATSCI 165)

Computational exploration of fundamental topics in materials science using Java-based computation and visualization tools. Emphasis is on the atomic-scale origins of macroscopic materials phenomena. Simulation methods include molecular dynamics and Monte Carlo with applications in thermodynamics, kinetics, and topics in statistical mechanics. Required prerequisites: Freshman-level physics, undergraduate thermodynamics. Undergraduates register for 165 for 4 units; graduates register for 175 for 3 units.
Terms: Win | Units: 3-4
Instructors: Reed, E. (PI)

MATSCI 190: Organic and Biological Materials (MATSCI 210)

Unique physical and chemical properties of organic materials and their uses.The relationship between structure and physical properties, and techniques to determine chemical structure and molecular ordering. Examples include liquid crystals, dendrimers, carbon nanotubes, hydrogels, and biopolymers such as lipids, protein, and DNA. Prerequisite: Thermodynamics and ENGR 50 or equivalent. Undergraduates register for 190 for 4 units; graduates register for 210 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA, WAY-AQR, GER:DB-EngrAppSci

MATSCI 192: Materials Chemistry (MATSCI 202)

An introduction to the fundamental physical chemical principles underlying materials properties. Beginning from basic quantum chemistry, students will learn how the electronic configuration of molecules and solids impacts their structure, stability/reactivity, and spectra. Topics for the course include molecular symmetry, molecular orbital theory, solid-state chemistry, coordination compounds, and nanomaterials chemistry. Using both classroom lectures and journal discussions, students will gain an understanding of and be well-positioned to contribute to the frontiers of materials chemistry, ranging from solar-fuel generation to next-generation cancer treatments. Undergraduates register in 192 for 4 units; graduates register in 202 for 3 units.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Cui, Y. (PI)

MATSCI 193: Atomic Arrangements in Solids (MATSCI 203)

Atomic arrangements in perfect and imperfect solids, especially important metals, ceramics, and semiconductors. Elements of formal crystallography, including development of point groups and space groups. Undergraduates register in 193 for 4 units; graduates register in 203 for 3 units.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Reed, E. (PI)

MATSCI 194: Thermodynamics and Phase Equilibria (MATSCI 204)

The principles of heterogeneous equilibria and their application to phase diagrams. Thermodynamics of solutions; chemical reactions; non-stoichiometry in compounds; first order phase transitions and metastability; thermodynamics of surfaces, elastic solids, dielectrics, and magnetic solids. Undergraduates register for 194 for 4 units; graduates register for 204 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Salleo, A. (PI)

MATSCI 195: Waves and Diffraction in Solids (MATSCI 205, PHOTON 205)

The elementary principals of x-ray, vibrational, and electron waves in solids. Basic wave behavior including Fourier analysis, interference, diffraction, and polarization. Examples of wave systems, including electromagnetic waves from Maxwell's equations. Diffracted intensity in reciprocal space and experimental techniques such as electron and x-ray diffraction. Lattice vibrations in solids, including vibrational modes, dispersion relationship, density of states, and thermal properties. Free electron model. Basic quantum mechanics and statistical mechanics including Fermi-Dirac and Bose-Einstein statistics. Prerequisite: 193/203 or consent of instructor. Undergraduates register for 195 for 4 units; graduates register for 205 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Clemens, B. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints