2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

181 - 190 of 194 results for: EE

EE 392T: Seminar in Chip Test and Debug

Seminars by industry professionals in digital IC manufacturing test and silicon debug. Topics include yield and binsplit modeling, defect types and detection, debug hardware, physical analysis, and design for test/debug circuits. Case studies of silicon failures. Prerequisite: basic digital IC design (271 or 371).
Terms: Win | Units: 1

EE 392X: Power Electronics Control and Energy-Aware Design

The course surveys control techniques for power management and renewable energy sources. The overall aim is to provide a broad overview on control and power electronics for intelligent energy management. Specific topics include: (1) Systematic discussion of concepts underlying control techniques and relevant design/optimization methods, (2) Impact of the power conversion topology and the quality of the passive components on control effectiveness, and (3) Power architecture and control issues relevant to system level optimization in photovoltaic applications.
Last offered: Autumn 2014

EE 395: Electrical Engineering Instruction: Practice Teaching

Open to advanced EE graduate students who plan to make teaching their career. Students conduct a section of an established course taught in parallel by an experienced instructor. Enrollment limited.
Terms: Aut, Win, Spr | Units: 1-15

EE 398: Image and Video Compression

The principles of source coding for the efficient storage and transmission of still and moving images. Entropy and lossless coding techniques. Run-length coding and fax compression. Arithmetic coding. Rate-distortion limits and quantization. Lossless and lossy predictive coding. Transform coding, JPEG. Subband coding, wavelets, JPEG2000. Motion-compensated coding, MPEG. Students investigate image and video compression algorithms in Matlab or C. Term project. Prerequisites: EE261, EE278.

EE 400: Thesis and Thesis Research

Limited to candidates for the degree of Engineer or Ph.D.May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: Allison, D. (PI) ; Arbabian, A. (PI) ; Bambos, N. (PI) ; Bayati, M. (PI) ; Boahen, K. (PI) ; Boneh, D. (PI) ; Bosi, M. (PI) ; Boyd, S. (PI) ; Bravman, J. (PI) ; Bube, R. (PI) ; Byer, R. (PI) ; Cheriton, D. (PI) ; Cioffi, J. (PI) ; Cover, T. (PI) ; Cox, D. (PI) ; DaRosa, A. (PI) ; Dai, H. (PI) ; Dally, B. (PI) ; Dasher, R. (PI) ; Dill, D. (PI) ; Duchi, J. (PI) ; Dutton, R. (PI) ; El Gamal, A. (PI) ; Emami-Naeini, A. (PI) ; Enge, P. (PI) ; Engler, D. (PI) ; Fan, S. (PI) ; Fejer, M. (PI) ; Franklin, G. (PI) ; Fraser-Smith, A. (PI) ; Garcia-Molina, H. (PI) ; Gibbons, F. (PI) ; Gibbons, J. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Glover, G. (PI) ; Goldsmith, A. (PI) ; Goodman, J. (PI) ; Gorinevsky, D. (PI) ; Gray, R. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Harris, J. (PI) ; Harris, S. (PI) ; Helms, C. (PI) ; Hennessy, J. (PI) ; Hesselink, L. (PI) ; Horowitz, M. (PI) ; Howe, R. (PI) ; Inan, U. (PI) ; Kahn, J. (PI) ; Katti, S. (PI) ; Kazovsky, L. (PI) ; Khuri-Yakub, B. (PI) ; Kino, G. (PI) ; Kovacs, G. (PI) ; Kozyrakis, C. (PI) ; Lall, S. (PI) ; Lam, M. (PI) ; Lee, T. (PI) ; Leeson, D. (PI) ; Levin, C. (PI) ; Levis, P. (PI) ; Levoy, M. (PI) ; Linscott, I. (PI) ; Manoharan, H. (PI) ; McCluskey, E. (PI) ; McConnell, M. (PI) ; McKeown, N. (PI) ; Melen, R. (PI) ; Meng, T. (PI) ; Miller, D. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Montanari, A. (PI) ; Murmann, B. (PI) ; Napel, S. (PI) ; Narasimha, M. (PI) ; Ng, A. (PI) ; Nishi, Y. (PI) ; Nishimura, D. (PI) ; Olukotun, O. (PI) ; Osgood, B. (PI) ; Ozgur, A. (PI) ; Paulraj, A. (PI) ; Pauly, J. (PI) ; Pauly, K. (PI) ; Pease, R. (PI) ; Pelc, N. (PI) ; Pianetta, P. (PI) ; Plummer, J. (PI) ; Poon, A. (PI) ; Pop, E. (PI) ; Popelka, G. (PI) ; Powell, J. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Quate, C. (PI) ; Rivas-Davila, J. (PI) ; Rosenblum, M. (PI) ; Saraswat, K. (PI) ; Shahidi, R. (PI) ; Shen, Z. (PI) ; Shenoy, K. (PI) ; Siegel, M. (PI) ; Smith, J. (PI) ; Soh, H. (PI) ; Solgaard, O. (PI) ; Spielman, D. (PI) ; Stinson, J. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Tse, D. (PI) ; Tyler, G. (PI) ; Ullman, J. (PI) ; Van Roy, B. (PI) ; Vuckovic, J. (PI) ; Walt, M. (PI) ; Wandell, B. (PI) ; Wang, S. (PI) ; Weissman, T. (PI) ; Wenstrand, J. (PI) ; White, R. (PI) ; Widom, J. (PI) ; Widrow, B. (PI) ; Wong, H. (PI) ; Wong, S. (PI) ; Wooley, B. (PI) ; Yamamoto, Y. (PI) ; Zebker, H. (PI)

EE 402T: Entrepreneurship in Asian High-Tech Industries (CHINGEN 402T, JAPANGEN 402T, KORGEN 402T)

Distinctive patterns and challenges of entrepreneurship in Asia; update of business and technology issues in the creation and growth of start-up companies in major Asian economies. Distinguished speakers from industry, government, and academia. Course may be repeated for credit.
Terms: Spr | Units: 1 | Repeatable for credit
Instructors: Dasher, R. (PI)

EE 410: Integrated Circuit Fabrication Laboratory

Fabrication, simulation, and testing of a submicron CMOS process. Practical aspects of IC fabrication including silicon wafer cleaning, photolithography, etching, oxidation, diffusion, ion implantation, chemical vapor deposition, physical sputtering, and electrical testing. Students also simulate the CMOS process using process simulator TSUPREM4 of the structures and electrical parameters that should result from the process flow. Taught in the Stanford Nanofabrication Facility (SNF). Preference to students pursuing doctoral research program requiring SNF facilities. Enrollment limited to 20. Prerequisites: EE 212, EE 216, consent of instructor.
Terms: Win | Units: 3-4

EE 412: Advanced Nanofabrication Laboratory

Experimental projects and seminars on integrated circuit fabrication using epitaxial, oxidation, diffusion, evaporation, sputtering, and photolithographic processes with emphasis on techniques for achieving advanced device performance. May be repeated for additional credit. Prerequisites: ENGR341 or EE410 or consent of instructor.
Terms: Aut | Units: 3 | Repeatable for credit
Instructors: Howe, R. (PI)

EE 414: RF Transceiver Design Laboratory

Students design, build, and test GHz transceivers using microstrip construction techniques and discrete components. The design, construction, and experimental characterization of representative transceiver building blocks: low noise amplifiers (LNAs), diode ring mixers, PLL-based frequency synthesizers, voltage-controlled oscillators (VCOs), power amplifiers (PAs), and microstrip filters and patch antennas. The characteristics of passive microstrip components (including interconnect). Emphasis is on a quantitative reconciliation of theoretical predictions and extensive experimental measurements performed with spectrum and network analyzers, time-domain reflectometers (TDRs), noise figure meter and phase noise analyzers. Prerequisites: EE 314A and EE 251 (or EE 251).
Last offered: Winter 2015
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints