2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 58 results for: EE

EE 14N: Things about Stuff

Preference to freshmen. The stories behind disruptive inventions such as the telegraph, telephone, wireless, television, transistor, and chip are as important as the inventions themselves, for they elucidate broadly applicable scientific principles. Focus is on studying consumer devices; projects include building batteries, energy conversion devices and semiconductors from pocket change. Students may propose topics and projects of interest to them. The trajectory of the course is determined in large part by the students themselves.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Lee, T. (PI)

EE 60N: Man versus Nature: Coping with Disasters Using Space Technology (GEOPHYS 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Zebker, H. (PI)

EE 100: The Electrical Engineering Profession

Lectures/discussions on topics of importance to the electrical engineering professional. Continuing education, professional societies, intellectual property and patents, ethics, entrepreneurial engineering, and engineering management.
Terms: Aut | Units: 1
Instructors: Dutton, R. (PI)

EE 103: Introduction to Matrix Methods (CME 103)

Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets. Matrices, left and right inverses, QR factorization. Least- squares and model fitting, regularization and cross-validation, time-series prediction, and other examples. Constrained least-squares; applications to least-norm reconstruction, optimal control, and portfolio optimization. Newton methods and nonlinear least-squares. Prerequisites: MATH 51 or CME 100.
Terms: Aut | Units: 4-5 | UG Reqs: GER:DB-Math, WAY-FR
Instructors: Boyd, S. (PI)

EE 108: Digital System Design

Digital circuit, logic, and system design. Digital representation of information. CMOS logic circuits. Combinational logic design. Logic building blocks, idioms, and structured design. Sequential logic design and timing analysis. Clocks and synchronization. Finite state machines. Microcode control. Digital system design. Control and datapath partitioning. Lab. Undergraduates must enroll for 4 units. *In Autumn, enrollment preference is given to EE majors. Formerly EE 108A.
Terms: Aut, Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

EE 114: Fundamentals of Analog Integrated Circuit Design (EE 214A)

Analysis and simulation of elementary transistor stages, current mirrors, supply- and temperature-independent bias, and reference circuits. Overview of integrated circuit technologies, circuit components, component variations and practical design paradigms. Differential circuits, frequency response, and feedback will also be covered. Performance evaluation using computer-aided design tools. Undergraduates must take EE 114 for 4 units. Prerequisite: 101B. GER:DB-EngrAppSci
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Arbabian, A. (PI)

EE 122A: Analog Circuits Laboratory

The course covers practical applications of mixed-signal circuits, including simple amplifiers, filters (passive, op-amp, switched-capacitor and digital-signal-processor-based), oscillators, power supplies, sensors and interface (input/output) circuits. Practical design skills, computer-aided design, and circuit fabrication and debugging are core topics. The design process is learned through proposing, designing, simulating, building, debugging, and demonstrating a substantial and novel team project. Radio frequency and largely digital projects not suitable for EE 122. Prerequisite: basic electronics laboratory experience with solid working knowledge of circuit analysis, Fourier and Laplace methods.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Kovacs, G. (PI)

EE 152: Green Electronics

Many green technologies including hybrid cars, photovoltaic energy systems, efficient power supplies, and energy-conserving control systems have at their heart intelligent, high-power electronics. This course examines this technology and uses green-tech examples to teach the engineering principles of modeling, optimization, analysis, simulation, and design. Topics include power converter topologies, periodic steady-state analysis, control, motors and drives, photovol-taic systems, and design of magnetic components. The course involves a hands-on laboratory and a substantial final project. Required: EE101B, EE102A, EE108A. Recommended: ENGR40 or EE122A.
Terms: Aut | Units: 4
Instructors: Dally, B. (PI)

EE 169: Introduction to Bioimaging

Bioimaging is important for both clinical medicine, and medical research. This course will provide a introduction to several of the major imaging modalities, using a signal processing perspective. The course will start with an introduction to multi-dimensional Fourier transforms, and image quality metrics. It will then study projection imaging systems (projection X-Ray), backprojection based systems (CT, PET, and SPECT), systems that use beam forming (ultrasound), and systems that use Fourier encoding (MRI). Prerequisites: EE102A, EE102B
Terms: Aut | Units: 3

EE 178: Probabilistic Systems Analysis

Introduction to probability and statistics and their role in modeling and analyzing real world phenomena. Events, sample space, and probability. Discrete random variables, probability mass functions, independence and conditional probability, expectation and conditional expectation. Continuous random variables, probability density functions, independence and expectation, derived densities. Transforms, moments, sums of independent random variables. Simple random processes. Limit theorems. Introduction to statistics: significance, estimation and detection. Prerequisites: basic calculus.
Terms: Aut, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints