2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

71 - 80 of 192 results for: all courses

EARTHSYS 102: Renewable Energy Sources and Greener Energy Processes (ENERGY 102)

The energy sources that power society are rooted in fossil energy although energy from the core of the Earth and the sun is almost inexhaustible; but the rate at which energy can be drawn from them with today's technology is limited. The renewable energy resource base, its conversion to useful forms, and practical methods of energy storage. Geothermal, wind, solar, biomass, and tidal energies; resource extraction and its consequences. Recommended: MATH 21 or 42.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci

EARTHSYS 103: Energy Resources (CEE 173A, CEE 207A)

Comprehensive overview of fossil and renewable energy resources and energy efficiency. Topics covered for each resource: resource abundance, location, recovery, conversion, consumption, end-uses, environmental impacts, economics, policy, and technology. Applied lectures in specific energy sectors: buildings, transportation, the electricity industry, and energy in the developing world. Required field trips to local energy facilities. Optional discussion section for extra unit. CEE 173 is offered for 4-5 units; ES 103 is offered for 4-5 units; CEE 207A is offered for 3-5 units: instructor approval required for 3-unit option.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-SI

EARTHSYS 113: Earthquakes and Volcanoes (GEOPHYS 90)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at nn https://pangea.stanford.edu/research/CDFM/CourseDescriptions/GP_113_announcement.pdf
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci, WAY-AQR
Instructors: Segall, P. (PI)

EE 14N: Things about Stuff

Preference to freshmen. The stories behind disruptive inventions such as the telegraph, telephone, wireless, television, transistor, and chip are as important as the inventions themselves, for they elucidate broadly applicable scientific principles. Focus is on studying consumer devices; projects include building batteries, energy conversion devices and semiconductors from pocket change. Students may propose topics and projects of interest to them. The trajectory of the course is determined in large part by the students themselves.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Lee, T. (PI)

EE 15N: The Art and Science of Engineering Design

The goal of this seminar is to introduce freshmen to the design process associated with an engineering project. The seminar will consist of a series of lectures. The first part of each lecture will focus on the different design aspects of an engineering project, including formation of the design team, developing a project statement, generating design ideas and specifications, finalizing the design, and reporting the outcome. Students will form teams to follow these procedures in designing a term project of their choice over the quarter. The second part of each lecture will consist of outside speakers, including founders of some of the most exciting companies in Silicon Valley, who will share their experiences about engineering design. On-site visits to Silicon Valley companies to showcase their design processes will also be part of the course. The seminar serves three purposes: (1) it introduces students to the design process of turning an idea into a final design, (2) it presents the different functions that people play in a project, and (3) it gives students a chance to consider what role in a project would be best suited to their interests and skills.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci

EE 17N: Engineering the Micro and Nano Worlds: From Chips to Genes

Preference to freshmen. The first part is hands-on micro- and nano-fabrication including the Stanford Nanofabrication Facility (SNF) and the Stanford Nanocharacterization Laboratory (SNL) and field trips to local companies and other research centers to illustrate the many applications; these include semiconductor integrated circuits ('chips'), DNA microarrays, microfluidic bio-sensors and microelectromechanical systems (MEMS). The second part is to create, design, propose and execute a project. Most of the grade will be based on the project. By the end of the course you will, of course, be able to read critically a New York Times article on nanotechnology. More importantly you will have experienced the challenge (and fun) of designing, carrying out and presenting your own experimental project. As a result you will be better equipped to choose your major. This course can complement (and differs from) the seminars offered by Profs Philip Wong and Hari Manoharan in that it emphasizes laboratory work and an experimental student-designed project. Prerequisites: high-school physics.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci

EE 21N: What is Nanotechnology?

Nanotechnology is an often used word and it means many things to different people. Scientists and Engineers have some notion of what nanotechnology is, societal perception may be entirely different. In this course, we start with the classic paper by Richard Feynman ("There's Plenty of Room at the Bottom"), which laid down the challenge to the nanotechnologists. Then we discuss two classic books that offer a glimpse of what nanotechnology is: Engines of Creation: The Coming Era of Nanotechnology by Eric Drexler, and Prey by Michael Crichton. Drexler's thesis sparked the imagination of what nano machinery might do, whereas Crichton's popular novel channeled the public's attention to this subject by portraying a disastrous scenario of a technology gone astray. We will use the scientific knowledge to analyze the assumptions and predictions of these classic works. We will draw upon the latest research advances to illustrate the possibilities and impossibilities of nanotechnology.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Wong, H. (PI)

EE 27N: Electronics Rocks

Electronics pervades our lives, yet we often feel obliged to let a device function as it was intended. This course is about not being intimidated by voiding a warranty and modding some commercial gadget and about being confident enough to build something cool from scratch. To get there, we will study the basics of "how things work" via "dissection and discussion" and discuss how to hack/mod but focus primarily how to scratch build. Students will be mentored and encouraged to work, in teams, to design and develop a substantial project based on embedded microprocessors and custom circuits as needed. Typical projects include (but are not limited to) microcontrollers such as the Arduino, LED's, sensors, wireless connections to the network or a laptop, and software/firmware as needed. Examples include programmable, color-changing wireless juggling balls, a self-healing mesh-networked hide-and-seek game, and a glowing plasma based clock built from surplus Soviet vacuum tubes and a modern microprocessor. Prerequisites: good hand-eye coordination, intelligence, teamwork skills, curiosity and humility.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Kovacs, G. (PI)

EE 41: Physics of Electrical Engineering (ENGR 40P)

How everything from electrostatics to quantum mechanics is used in common high-technology products. Electrostatics are critical in micro-mechanical systems used in many sensors and displays, and Electromagnetic waves are essential in all high-speed communication systems. How to propagate energy on transmission lines, optical fibers,and in free space. Which aspects of modern physics are needed to generate light for the operation of a DVD player or TV. Introduction to semiconductors, solid-state light bulbs, and laser pointers. Hands-on labs to connect physics to everyday experience. Prerequisites: Physics 43
Last offered: Winter 2014 | UG Reqs: GER:DB-EngrAppSci, WAY-FR, WAY-SMA

EE 60N: Man versus Nature: Coping with Disasters Using Space Technology (GEOPHYS 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Zebker, H. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints