2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

61 - 70 of 105 results for: EARTHSYS ; Currently searching offered courses. You can also include unoffered courses

EARTHSYS 185: Feeding Nine Billion

Feeding a growing and wealthier population is a huge task, and one with implications for many aspects of society and the environment. There are many tough choices to be made- on fertilizers, groundwater pumping, pesticide use, organics, genetic modification, etc. Unfortunately, many people form strong opinions about these issues before understanding some of the basics of how food is grown, such as how most farmers currently manage their fields, and their reasons for doing so. The goal of this class is to present an overview of global agriculture, and the tradeoffs involved with different practices. Students will develop two key knowledge bases: basic principles of crop ecology and agronomy, and familiarity with the scale of the global food system. The last few weeks of the course will be devoted to building on this knowledge base to evaluate different future directions for agriculture.
Terms: Win | Units: 4-5 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit

EARTHSYS 186: Farm and Garden Environmental Education Practicum (EARTHSYS 286)

Farms and gardens provide excellent settings for place-based environmental education that emphasize human ecological relationships and experiential learning. The O'Donohue Family Stanford Educational Farm is the setting to explore the principles and practices of farm and garden-based education in conjunction with the farm's new field trip program for local youth. The course includes readings and reflections on environmental education and emphasis on learning by doing, engaging students in the practice of team teaching. Application required. Deadline: March 14.nnApplication: https://stanforduniversity.qualtrics.com/jfe/form/SV_9SPufdULCh93rbT
Terms: Spr | Units: 2 | Grading: Satisfactory/No Credit

EARTHSYS 187: FEED the Change: Redesigning Food Systems

FEED the Change is a project-based course focused on solving real problems in the food system. Targeted at upper-class undergraduates, this course provides an opportunity for students to meet and work with thought-leading innovators, to gain meaningful field experience, and to develop connections with faculty, students, and others working to create impact in the food system. Students in the course will develop creative confidence by learning and using the basic principles and methodologies of human-centered design, storytelling, and media design. Students will also learn basic tools for working effectively in teams and for analyzing complex social systems. FEED the Change is taught at the d.school and is offered through the FEED Collaborative in the School of Earth. This class requires an application. For application information and more information about our work and about past class projects, please visit our website at http://feedcollaborative.org/classes/
Terms: Aut | Units: 2-3 | UG Reqs: WAY-CE | Grading: Letter (ABCD/NP)

EARTHSYS 188: Social and Environmental Tradeoffs in Climate Decision-Making (EARTHSYS 288)

How can we ensure that measures taken to mitigate global climate change don't create larger social and environmental problems? What metrics should be used to compare potential climate solutions beyond cost and technical feasibility, and how should these metrics be weighed against each other? How can modeling efforts and stakeholder engagement be best integrated into climate decision making? What information are we still missing to make fully informed decisions between technologies and policies? Exploration of these questions, alongside other issues related to potential negative externalities of emerging climate solutions. Evaluation of energy, land use, and geoengineering approaches in an integrated context, culminating in a climate stabilization group project.
Terms: Win | Units: 1-2 | Grading: Letter or Credit/No Credit

EARTHSYS 190: The Multimedia Story

Stories are how we understand ourselves and the world. This course will teach how to plan, research, report and produce a long-form, rich-media science/environment feature story. Students will work in groups or individually to master the blending of text with data visualization, photos, audio, and video. Teachers are experienced digital journalists at leading national and international publications with a close eye on trends and innovations in online, investigative, and data journalism.nnUsing the landmark New York Times story Snow Fall (http://nyti.ms/1eTyf2Y) as a departure point, the course will examine the questions: how do we engage and inform the public around critical environmental topics? How do we explain complex and sometimes hidden factors shaping the future of our world?nnStudents are asked to express interest through this form: http://bit.ly/2odHWo7
Terms: Spr | Units: 2-3 | Grading: Letter (ABCD/NP)

EARTHSYS 191: Concepts in Environmental Communication (EARTHSYS 291)

Introduction to the history, development, and current state of communication of environmental science and policy to non-specialist audiences. Includes fundamental principles, core competencies, and major challenges of effective environmental communication in the public and policy realms and an overview of the current scope of research and practice in environmental communication. Intended for graduate students and advanced undergraduates, with a background in environmental science and/or policy studies. Prerequisite: Earth Systems core ( EarthSys 111 and EarthSys 112) or equivalent. (Meets Earth Systems WIM requirement.)
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit

EARTHSYS 196: Implementing Climate Solutions at Scale (EARTHSYS 296)

Climate change is the biggest problem humanity has ever faced, and this course will teach students about the means and complexity of solving it. The instructors will guide the students in the application of key data and analysis tools for their final project, which will involve developing integrated plans for eliminating greenhouse gas emissions (100% reductions) by 2050 for a country, state, province, sector, or industry.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

EARTHSYS 197: Directed Individual Study in Earth Systems

Under supervision of an Earth Systems faculty member on a subject of mutual interest.
Terms: Win, Spr, Sum | Units: 1-9 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: Hoagland, S. (PI)

EARTHSYS 199: Honors Program in Earth Systems

Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: Ardoin, N. (PI) ; Arrigo, K. (PI) ; Asner, G. (PI) ; Block, B. (PI) ; Boggs, C. (PI) ; Boucher, A. (PI) ; Caldwell, M. (PI) ; Casciotti, K. (PI) ; Chamberlain, P. (PI) ; Daily, G. (PI) ; Davis, J. (PI) ; Denny, M. (PI) ; Diffenbaugh, N. (PI) ; Dirzo, R. (PI) ; Dunbar, R. (PI) ; Dunn, D. (PI) ; Durham, W. (PI) ; Egger, A. (PI) ; Ernst, W. (PI) ; Falcon, W. (PI) ; Fendorf, S. (PI) ; Field, C. (PI) ; Francis, C. (PI) ; Frank, Z. (PI) ; Freyberg, D. (PI) ; Fukami, T. (PI) ; Gerritsen, M. (PI) ; Gilly, W. (PI) ; Gordon, D. (PI) ; Gorelick, S. (PI) ; Goulder, L. (PI) ; Hadly, E. (PI) ; Hayden, T. (PI) ; Hecker, S. (PI) ; Hilley, G. (PI) ; Ingle, J. (PI) ; Kennedy, D. (PI) ; Kennedy, D. (PI) ; Kennedy, J. (PI) ; Knight, R. (PI) ; Koseff, J. (PI) ; Kovscek, A. (PI) ; Lambin, E. (PI) ; Litvak, L. (PI) ; Lobell, D. (PI) ; Long, S. (PI) ; Masters, G. (PI) ; Matson, P. (PI) ; Micheli, F. (PI) ; Monismith, S. (PI) ; Mooney, H. (PI) ; Mordecai, E. (PI) ; Naylor, R. (PI) ; Orr, F. (PI) ; Palumbi, S. (PI) ; Payne, J. (PI) ; Peay, K. (PI) ; Pringle, J. (PI) ; Rajaratnam, B. (PI) ; Root, T. (PI) ; Schneider, S. (PI) ; Schoolnik, G. (PI) ; Seto, K. (PI) ; Somero, G. (PI) ; Sweeney, J. (PI) ; Switzer, P. (PI) ; Tabazadeh, A. (PI) ; Thomas, L. (PI) ; Thompson, B. (PI) ; Victor, D. (PI) ; Vitousek, P. (PI) ; Walbot, V. (PI) ; Watanabe, J. (PI) ; Welander, P. (PI) ; Weyant, J. (PI) ; Wiederkehr, S. (PI) ; Woodward, J. (PI) ; Zoback, M. (PI)

EARTHSYS 205: Food and Community: Food Security, Resilience and Equity (EARTHSYS 105)

What can communities do to bolster food security, resiliency, and equity in the face of climate change? This course aims to respond to this question, in three parts. In Part 1, we will explore the most current scientific findings on trends in anthropogenic climate forcing and the anticipated impacts on global and regional food systems. Specifically, Part I will review the anticipated impact of climate change on severe weather events, crop losses, and food price volatility and the influence of these impacts on global and regional food insecurity and hunger. In Part II, we will consider what communities can do to promote food security and equity in the face of these changes, by reviewing the emerging literature on food system resiliency. Finally, we will facilitate a conference in which multi-disciplinary teams from around the country will gather to initiate regional planning projects designed to enhance food system resilience and equity. Cardinal Course (certified by Haas Center). Limited enrollment. May be repeated for credit.
Terms: Spr | Units: 2-3 | Repeatable for credit | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints