2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

21 - 30 of 97 results for: EARTHSYS ; Currently searching offered courses. You can also include unoffered courses

EARTHSYS 105A: Ecology and Natural History of Jasper Ridge Biological Preserve (BIO 105A)

Formerly 96A - Jasper Ridge Docent Training. First of two-quarter sequence training program to join the Jasper Ridge education/docent program. The scientific basis of ecological research in the context of a field station, hands-on field research, field ecology and the natural history of plants and animals, species interactions, archaeology, geology, hydrology, land management, multidisciplinary environmental education; and research projects, as well as management challenges of the preserve presented by faculty, local experts, and staff. Participants lead research-focused educational tours, assist with classes and research, and attend continuing education classes available to members of the JRBP community after the course.
Terms: Win | Units: 4 | Grading: Satisfactory/No Credit
Instructors: Wilber, C. (PI)

EARTHSYS 105B: Ecology and Natural History of Jasper Ridge Biological Preserve (BIO 105B)

Formerly 96B - Jasper Ridge Docent Training. First of two-quarter sequence training program to join the Jasper Ridge education/docent program. The scientific basis of ecological research in the context of a field station, hands-on field research, field ecology and the natural history of plants and animals, species interactions, archaeology, geology, hydrology, land management, multidisciplinary environmental education; and research projects, as well as management challenges of the preserve presented by faculty, local experts, and staff. Participants lead research-focused educational tours, assist with classes and research, and attend continuing education classes available to members of the JRBP community after the course.
Terms: Spr | Units: 4 | Grading: Satisfactory/No Credit
Instructors: Wilber, C. (PI)

EARTHSYS 107: Control of Nature (ESS 107)

Think controlling the earth's climate is science fiction? It is when you watch Snowpiercer or Dune, but scientists are already devising geoengineering schemes to slow climate change. Will we ever resurrect the woolly mammoth or even a T. Rex (think Jurassic Park)? Based on current research, that day will come in your lifetime. Who gets to decide what species to save? And more generally, what scientific and ethical principles should guide our decisions to control nature? In this course, we will examine the science behind ways that people alter and engineer the earth, critically examining the positive and negative consequences. We'll explore these issues first through popular movies and books and then, more substantively, in scientific research.
Terms: Spr | Units: 3 | UG Reqs: GER:EC-EthicReas, WAY-ER | Grading: Letter or Credit/No Credit
Instructors: Jackson, R. (PI)

EARTHSYS 108: U.S. Environmental Law in Transition (EARTHSYS 208)

This course offers an accessible survey of timely topics in environmental law and policy as the United States transitions presidential administrations. Taught by two practicing lawyers, the class introduces students from any background to the interactions between local, state, and federal environmental law as they apply to prominent policy issues. We will analyze major changes in federal policy, providing historical context for the transformations now underway in the laws and institutions that help shape environmental outcomes in the United States.
Terms: Spr | Units: 1 | Grading: Satisfactory/No Credit

EARTHSYS 110: Introduction to the foundations of contemporary geophysics (GEOPHYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and enviroment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. Prerequisite: CME 100 or MA TH 51, or co-registration in either.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

EARTHSYS 111: Biology and Global Change (BIO 117, ESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Arrigo, K. (PI)

EARTHSYS 112: Human Society and Environmental Change (EARTHSYS 212, ESS 112, HISTORY 103D)

Interdisciplinary approaches to understanding human-environment interactions with a focus on economics, policy, culture, history, and the role of the state. Prerequisite: ECON 1.
Terms: Aut | Units: 4 | UG Reqs: WAY-SI | Grading: Letter or Credit/No Credit

EARTHSYS 113: Earthquakes and Volcanoes (GEOPHYS 90)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Beroza, G. (PI)

EARTHSYS 114: Environmental Change and Emerging Infectious Diseases (ANTHRO 177, ANTHRO 277, EARTHSYS 214, HUMBIO 114)

The changing epidemiological environment. How human-induced environmental changes, such as global warming, deforestation and land-use conversion, urbanization, international commerce, and human migration, are altering the ecology of infectious disease transmission, and promoting their re-emergence as a global public health threat. Case studies of malaria, cholera, hantavirus, plague, and HIV.
Terms: Win | Units: 4-5 | UG Reqs: GER:DB-SocSci | Grading: Letter or Credit/No Credit

EARTHSYS 122: Evolution of Marine Ecosystems (BIO 119, GS 123, GS 223B)

Life originally evolved in the ocean. When, why, and how did the major transitions occur in the history of marine life? What triggered the rapid evolution and diversification of animals in the Cambrian, after more than 3.5 billion years of Earth's history? What caused Earth's major mass extinction events? How do ancient extinction events compare to current threats to marine ecosystems? How has the evolution of primary producers impacted animals, and how has animal evolution impacted primary producers? In this course, we will review the latest evidence regarding these major questions in the history of marine ecosystems. We will develop familiarity with the most common groups of marine animal fossils. We will also conduct original analyses of paleontological data, developing skills both in the framing and testing of scientific hypotheses and in data analysis and presentation.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints