2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

61 - 70 of 134 results for: all courses

EARTHSYS 155: Science of Soils (ESS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 4-5 | UG Reqs: WAY-SMA, GER: DB-NatSci
Instructors: Fendorf, S. (PI)

EARTHSYS 164: Introduction to Physical Oceanography (CEE 162D, CEE 262D, ESS 148)

An introduction to what causes the motions in the oceans. Topics include: the physical environment of the ocean; properties of sea water; atmosphere-ocean interactions; conservation of heat, salt, mass, and momentum, geostrophic flows, wind-driven circulation patterns; the Gulf Stream; equatorial dynamics and El Nino; and tides. By the end of the course, students will have physical intuition for why ocean currents look the way they do and a basic mathematical framework for quantifying the motions. Prerequisite: PHYSICS 41
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

EARTHSYS 323: Stanford at Sea (BIO 182H, BIO 323H, ESS 323, OCEANS 182H, OCEANS 323H)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Terms: Spr | Units: 16 | UG Reqs: GER: DB-NatSci, WAY-SMA

ECON 155: Environmental Economics and Policy

Economic sources of environmental problems and alternative policies for dealing with them (technology standards, emissions taxes, and marketable pollution permits). Evaluation of policies addressing local air pollution, global climate change, and the use of renewable resources. Connections between population growth, economic output, environmental quality, sustainable development, and human welfare. Prerequisite for Undergraduates: ECON 50. May be taken concurrently with consent of the instructor.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SI

EE 65: Modern Physics for Engineers (ENGR 65)

This course introduces the core ideas of modern physics that enable applications ranging from solar energy and efficient lighting to the modern electronic and optical devices and nanotechnologies that sense, process, store, communicate and display all our information. Though the ideas have broad impact, the course is widely accessible to engineering and science students with only basic linear algebra and calculus through simple ordinary differential equations as mathematics background. Topics include the quantum mechanics of electrons and photons (Schr¿dinger's equation, atoms, electrons, energy levels and energy bands; absorption and emission of photons; quantum confinement in nanostructures), the statistical mechanics of particles (entropy, the Boltzmann factor, thermal distributions), the thermodynamics of light (thermal radiation, limits to light concentration, spontaneous and stimulated emission), and the physics of information (Maxwell's demon, reversibility, entropy and noise in physics and information theory). Pre-requisite: Physics 41. Pre- or co-requisite: Math 53 or CME 102.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, GER:DB-EngrAppSci, WAY-SMA

EMED 122: BioSecurity and Pandemic Resilience (BIOE 122, EMED 222, PUBLPOL 122, PUBLPOL 222)

Overview of the most pressing biosecurity issues facing the world today, with a special focus on the COVID-19 pandemic. Critical examination of ways of enhancing biosecurity and pandemic resilience to the current and future pandemics. Examination of how the US and the world are able to withstand a pandemic or a bioterrorism attack, how the medical/healthcare field, government, and technology sectors are involved in biosecurity and pandemic or bioterrorism preparedness and response and how they interface; the rise of synthetic biology with its promises and threats; global bio-surveillance; effectiveness of various containment and mitigation measures; hospital surge capacity; medical challenges; development, production, and distribution of countermeasures such as vaccines and drugs; supply chain challenges; public health and policy aspects of pandemic preparedness and response; administrative and engineering controls to enhance pandemic resilience; testing approaches and challenges; prom more »
Overview of the most pressing biosecurity issues facing the world today, with a special focus on the COVID-19 pandemic. Critical examination of ways of enhancing biosecurity and pandemic resilience to the current and future pandemics. Examination of how the US and the world are able to withstand a pandemic or a bioterrorism attack, how the medical/healthcare field, government, and technology sectors are involved in biosecurity and pandemic or bioterrorism preparedness and response and how they interface; the rise of synthetic biology with its promises and threats; global bio-surveillance; effectiveness of various containment and mitigation measures; hospital surge capacity; medical challenges; development, production, and distribution of countermeasures such as vaccines and drugs; supply chain challenges; public health and policy aspects of pandemic preparedness and response; administrative and engineering controls to enhance pandemic resilience; testing approaches and challenges; promising technologies for pandemic response and resilience, and other relevant topics. Guest lecturers have included former Secretary of State Condoleezza Rice, former Special Assistant on BioSecurity to Presidents Clinton and Bush Jr. Dr. Ken Bernard, former Assistant Secretary of Health and Human Services Dr. Robert Kadlec, eminent scientists, public health leaders, innovators and physicians in the field, and leaders of relevant technology companies. Open to medical, graduate, and undergraduate students. No prior background in biology necessary. Must be taken for at least 4 units to get WAYs credit. Students also have an option to take the class for 2 units as a speaker series/seminar where they attend half the class sessions (or more) and complete short weekly assignments. In -person, asynchronous synchronous online instruction are available.
Terms: Win | Units: 2-5 | UG Reqs: GER: DB-NatSci, GER:EC-GlobalCom, WAY-SI | Repeatable 3 times (up to 15 units total)
Instructors: Trounce, M. (PI)

ENGR 65: Modern Physics for Engineers (EE 65)

This course introduces the core ideas of modern physics that enable applications ranging from solar energy and efficient lighting to the modern electronic and optical devices and nanotechnologies that sense, process, store, communicate and display all our information. Though the ideas have broad impact, the course is widely accessible to engineering and science students with only basic linear algebra and calculus through simple ordinary differential equations as mathematics background. Topics include the quantum mechanics of electrons and photons (Schr¿dinger's equation, atoms, electrons, energy levels and energy bands; absorption and emission of photons; quantum confinement in nanostructures), the statistical mechanics of particles (entropy, the Boltzmann factor, thermal distributions), the thermodynamics of light (thermal radiation, limits to light concentration, spontaneous and stimulated emission), and the physics of information (Maxwell's demon, reversibility, entropy and noise in physics and information theory). Pre-requisite: Physics 41. Pre- or co-requisite: Math 53 or CME 102.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, GER: DB-NatSci, WAY-SMA

EPS 1: Introduction to Geology (EARTHSYS 11)

(Former GEOLSCI 1) Why are earthquakes, volcanoes, and natural resources located at specific spots on the Earth's surface? Why are there rolling hills to the west behind Stanford and soaring granite walls to the east in Yosemite? What was the Earth like in the past, and what will it be like in the future? Lectures, hands-on laboratories, in-class activities, and one virtual field trip will help you see the Earth through the eyes of a geologist. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history. Change of Department Name: Earth & Planetary Sciences (Formerly Geological Science)
Terms: Spr | Units: 5 | UG Reqs: WAY-AQR, GER: DB-NatSci, WAY-SMA

EPS 4: Coevolution of Earth and Life (EARTHSYS 4)

( EPS 4 - Former GEOLSCI 4) Earth is the only planet in the universe currently known to harbor life. When and how did Earth become inhabited? How have biological activities altered the planet? How have environmental changes affected the evolution of life? In this course, we explore these questions by developing an understanding of life's multi-billion year history using tools from biology, geology, paleontology, and chemistry. We discuss major groups of organisms, when they appear in the rock record, and how they have interacted with the Earth to create the habitats and ecosystems that we are familiar with today. Change of Department Name: Earth & Planetary Sciences (Formerly Geological Science)
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EPS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (EARTHSYS 38N, ESS 38N)

(Formerly GEOLSCI 38N) This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March. Change of Department Name: Earth and Planetary Science (Formerly Geologic Sciences).
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints