2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

11 - 20 of 40 results for: ENGR

ENGR 70A: Programming Methodology (CS 106A)

Introduction to the engineering of computer applications emphasizing modern software engineering principles: object-oriented design, decomposition, encapsulation, abstraction, and testing. Emphasis is on good programming style and the built-in facilities of respective languages. No prior programming experience required. Summer quarter enrollment is limited. Alternative versions of CS106A are available which cover most of the same material but in different programming languages: Java [Fall, Win, Spr, or Sum qtr enroll in CS106A Section 1] Javascript [Fall qtr enroll in CS 106A Section 2] Python [Winter or Spring qtr enroll in CS 106A Section 3]
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit

ENGR 70B: Programming Abstractions (CS 106B)

Abstraction and its relation to programming. Software engineering principles of data abstraction and modularity. Object-oriented programming, fundamental data structures (such as stacks, queues, sets) and data-directed design. Recursion and recursive data structures (linked lists, trees, graphs). Introduction to time and space complexity analysis. Uses the programming language C++ covering its basic facilities. Prerequisite: 106A or equivalent. Summer quarter enrollment is limited.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit

ENGR 70X: Programming Abstractions (Accelerated) (CS 106X)

Intensive version of 106B for students with a strong programming background interested in a rigorous treatment of the topics at an accelerated pace. Additional advanced material and more challenging projects. Winter quarter assignments will be based in CS department research. Prerequisite: excellence in 106A or equivalent, or consent of instructor. Winter quarter enrollment limited to 30.
Terms: Aut, Win | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit

ENGR 90: Environmental Science and Technology (CEE 70)

Introduction to environmental quality and the technical background necessary for understanding environmental issues, controlling environmental degradation, and preserving air and water quality. Material balance concepts for tracking substances in the environmental and engineering systems.
Terms: Win, Sum | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR | Grading: Letter or Credit/No Credit
Instructors: Kopperud, R. (PI)

ENGR 100: Teaching Public Speaking

The theory and practice of teaching public speaking and presentation development. Lectures/discussions on developing an instructional plan, using audiovisual equipment for instruction, devising tutoring techniques, and teaching delivery, organization, audience analysis, visual aids, and unique speaking situations. Weekly practice speaking. Students serve as apprentice speech tutors. Those completing course may become paid speech instructors in the Technical Communications Program. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Vassar, M. (PI)

ENGR 103: Public Speaking (ENGR 203)

Priority to Engineering students. Introduction to speaking activities, from impromptu talks to carefully rehearsed formal professional presentations. How to organize and write speeches, analyze audiences, create and use visual aids, combat nervousness, and deliver informative and persuasive speeches effectively. Weekly class practice, rehearsals in one-on-one tutorials, videotaped feedback. Limited enrollment.
Terms: Aut, Win, Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Vassar, M. (PI)

ENGR 105: Feedback Control Design

Design of linear feedback control systems for command-following error, stability, and dynamic response specifications. Root-locus and frequency response design techniques. Examples from a variety of fields. Some use of computer aided design with MATLAB. Prerequisite: EE 102B, CME 102 ( Math 53) or ME 161.
Terms: Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

ENGR 110: Perspectives in Assistive Technology (ENGR 110) (ENGR 210)

Seminar and student project course. Explores the medical, social, ethical, and technical challenges surrounding the design, development, and use of technologies that improve the lives of people with disabilities and older adults. Guest lecturers include engineers, clinicians, and individuals with disabilities. Field trips to local facilities, an assistive technology faire, and a film screening. Students from any discipline are welcome to enroll. 3 units for students (juniors, seniors, and graduate students preferred) who pursue a team-based assistive technology project with a community partner - enrollment limited to 24. 1 unit for seminar attendance only (CR/NC) or individual project (letter grade). Total enrollment limited to classroom capacity of 50. Projects can be continued as independent study in Spring Quarter. See http://engr110.stanford.edu/. Designated a Cardinal Course by the Haas Center for Public Service.
Terms: Win | Units: 1-3 | Grading: Letter or Credit/No Credit
Instructors: Jaffe, D. (PI)

ENGR 117: Expanding Engineering Limits: Culture, Diversity, and Gender (CSRE 117, CSRE 217, FEMGEN 117, FEMGEN 217)

This course investigates how culture, and diversity, including gender, shape who becomes an engineer, what problems get solved, and the quality of designs, technology, and products. We first examine the characteristics of engineering cultures -- what are the interactions, symbols and ideas, and practices that define engineering? We then investigate how gender and other markers of diverse identities are interdependent and culturally constructed, how gender and other kinds of diversity are experienced in engineering cultures, and how these experiences have consequence for engineering innovation and the engineering profession. Finally, we analyze examples of cultural change in engineering and implications for engineering knowledge and practice. The course involves weekly presentations by distinguished scholars and engineers, readings, short writing assignments, small-group discussion, and exercises around one's own experiences in and related to engineering. Those taking the course for 3 units will also complete a research-based project, and must take the course for a letter grade to meet the undergraduate WAY-ED requirement.
Terms: Win | Units: 2-3 | UG Reqs: WAY-ED | Grading: Letter or Credit/No Credit

ENGR 131: Ethical Issues in Engineering

Fundamental ethical responsibilities of engineers. Ethical responsibilities to society, employers, colleagues, and clients; ethics, cost-benefit-risk analysis, and safety; informed consent; ethical responsibilities of radical engineering design; the ethics of whistleblowing; ethical issues engineers face as expert witnesses, consultants, and managers; ethical issues in engineering research, design, testing, and manufacturing; ethical issues arising from engineering work in foreign countries; and ethical issues arising from the social, cultural, and environmental contexts of contemporary engineering work. Contemporary case studies. Enrollment strictly limited to 60. Students seeking a slot must attend and complete an application at the first class session.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-Hum, WAY-ER | Grading: Letter (ABCD/NP)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints