2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 42 results for: CHEMENG

CHEMENG 25E: Energy: Chemical Transformations for Production, Storage, and Use (ENGR 25E)

An introduction and overview to the challenges and opportunities of energy supply and consumption. Emphasis on energy technologies where chemistry and engineering play key roles. Review of energy fundamentals along with historical energy perspectives and current energy production technologies. In depth analysises of solar thermal systems, biofuels, photovoltaics and electrochemical devices (batteries and fuel cells). Prerequisites: high school chemistry or equivalent.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci

CHEMENG 110: Equilibrium Thermodynamics

Thermodynamic properties, equations of state, properties of non-ideal systems including mixtures, and phase and chemical equilibria. Prerequisite: CHEM 171 or equivalent.
Terms: Win | Units: 3

CHEMENG 120A: Fluid Mechanics

The flow of isothermal fluids from a momentum transport viewpoint. Continuum hypothesis, scalar and vector fields, fluid statics, non-Newtonian fluids, shell momentum balances, equations of motion and the Navier-Stokes equations, creeping and potential flow, parallel and nearly parallel flows, time-dependent parallel flows, boundary layer theory and separation, introduction to drag correlations. Prerequisites: junior in Chemical Engineering or consent of instructor; 100 and CME 102 or equivalent.
Terms: Win | Units: 4

CHEMENG 140: Micro and Nanoscale Fabrication Engineering (CHEMENG 240)

(Same as CHEMENG 140) Survey of fabrication and processing technologies in industrial sectors, such as semiconductor, biotechnology, and energy. Chemistry and transport of electronic and energy device fabrication. Solid state materials, electronic devices and chemical processes including crystal growth, chemical vapor deposition, etching, oxidation, doping, diffusion, thin film deposition, plasma processing. Micro and nanopatterning involving photolithography, unconventional soft lithography and self assembly. Recommended: CHEM 33, 171, and PHYSICS 55
Terms: Win | Units: 3

CHEMENG 150: Biochemical Engineering

Systems-level combination of chemical engineering concepts with biological principles. The production of protein pharmaceuticals as a paradigm to explore quantitative biochemistry and cellular physiology, the elemental stoichiometry of metabolism, recombinant DNA technology, synthetic biology and metabolic engineering, fermentation development and control, product isolation and purification, protein folding and formulation, and biobusiness and regulatory issues. Prerequisite: CHEMENG 181 (formerly 188) or BIOSCI 41 or equivalent.
Terms: Win | Units: 3

CHEMENG 160: Soft Matter in Biomedical Devices, Microelectronics, and Everyday Life (BIOE 158, MATSCI 158)

The relationships between molecular structure, morphology, and the unique physical, chemical, and mechanical behavior of polymers and other types of ¿soft matter¿ are discussed. Topics include methods for preparing synthetic polymers and examination of how enthalpy and entropy determine conformation, solubility, mechanical behavior, microphase separation, crystallinity, glass transitions, elasticity, and linear viscoelasticity. Case studies covering polymers in biomedical devices and microelectronics will be covered. Prerequisites: ENG 50 or equivalent.
Terms: Win | Units: 4

CHEMENG 162: Polymers for Clean Energy and Water (CHEMENG 262)

The first five weeks of this course will be devoted to the fundamental aspects of polymers necessary to understand the applications in energy and the environment. These include: polymer chain configuration, morphology of semi-crystalline and amorphous solids, thermal transition behavior, thermodynamics of polymer blends and block copolymers, and the time/temperature dependence of linear viscoelasticity. The remaining five weeks of class will be devoted to applications, with special emphasis on membrane transport, including ion transport in fuel cell exchange membranes, gas transport in hydrogen enrichment membranes, and water transport in desalination membranes. In addition, completely degradable biocomposites will be discussed. nPrerequisites: CHEM 31 A,B or CHEM 31X, CHEM 33, CHEM 171
Terms: Win | Units: 3

CHEMENG 183: Biochemistry II (CHEM 183, CHEMENG 283)

Focus on metabolic biochemistry: the study of chemical reactions that provide the cell with the energy and raw materials necessary for life. Topics include glycolysis, gluconeogenesis, the citric acid cycle, oxidative phosphorylation, photosynthesis, the pentose phosphate pathway, and the metabolism of glycogen, fatty acids, amino acids, and nucleotides as well as the macromolecular machines that synthesize RNA, DNA, and proteins. Medical relevance is emphasized throughout. Satisfies Central Menu Area 1 for Bio majors. Prerequisite: CHEM 181 or CHEM 143 or CHEMENG 181/281.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci

CHEMENG 185B: Chemical Engineering Laboratory B

Second quarter of two-quarter sequence. Experimental aspects of chemical engineering. Emphasizes experimental design, project execution, team organization, and communication skills. Lab section times will not be assigned, though students should expect to spend at least 5 hours per week on average in the lab working on their team research projects. Labs will typically be available M-F between 9am-6pm; to be arranged separately. Prerequisite: CHEMENG 185A. Corequisite: CHEMENG 150.
Terms: Win | Units: 4

CHEMENG 190: Undergraduate Research in Chemical Engineering

Laboratory or theoretical work for undergraduates under the supervision of a faculty member. Research in one of the graduate research groups or other special projects in the undergraduate chemical engineering lab. Students should consult advisers for information on available projects. Course may be repeated.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints