2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 15 results for: DBIO

DBIO 199: Undergraduate Research

Students undertake investigations sponsored by individual faculty members. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit | Grading: Letter or Credit/No Credit

DBIO 210: Developmental Biology

Current areas of research in developmental biology. How organismic complexity is generated during embryonic and post-embryonic development. The roles of genetic networks, gene regulation ,organogenesis, tissue patterning, cell lineage, maternal inheritance, cell-cell communication, signaling, and regeneration in developmental processes in well- studied organisms such as vertebrates, insects, and nematodes. Team-taught. Students meet with faculty to discuss current papers from the literature. Prerequisite: graduate standing, consent of instructor. Recommended: familiarity with basic techniques and experimental rationales of molecular biology, biochemistry, and genetics.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)
Instructors: Barna, M. (PI)

DBIO 211: Biophysics of Multi-cellular Systems and Amorphous Computing (BIOE 211, BIOE 311, BIOPHYS 311)

Provides an interdisciplinary perspective on the design, emergent behavior, and functionality of multi-cellular biological systems such as embryos, biofilms, and artificial tissues and their conceptual relationship to amorphous computers. Students discuss relevant literature and introduced to and apply pertinent mathematical and biophysical modeling approaches to various aspect multi-cellular systems, furthermore carry out real biology experiments over the web. Specific topics include: (Morphogen) gradients; reaction-diffusion systems (Turing patterns); visco-elastic aspects and forces in tissues; morphogenesis; coordinated gene expression, genetic oscillators and synchrony; genetic networks; self-organization, noise, robustness, and evolvability; game theory; emergent behavior; criticality; symmetries; scaling; fractals; agent based modeling. The course is geared towards a broadly interested graduate and advanced undergraduates audience such as from bio / applied physics, computer science, developmental and systems biology, and bio / tissue / mechanical / electrical engineering. Prerequisites: Previous knowledge in one programming language - ideally Matlab - is recommended; undergraduate students benefit from BIOE 41, BIOE 42, or equivalent.
Terms: Win | Units: 2-3 | Grading: Medical Option (Med-Ltr-CR/NC)

DBIO 215: Frontiers in Biological Research (BIOC 215, GENE 215)

Students analyze cutting edge science, develop a logical framework for evaluating evidence and models, and enhance their ability to design original research through exposure to experimental tools and strategies. The class runs in parallel with the Frontiers in Biological Research seminar series. Students and faculty meet on the Tuesday preceding each seminar to discuss a landmark paper in the speaker's field of research. Following the Wednesday seminar, students meet briefly with the speaker for a free-range discussion which can include insights into the speakers' paths into science and how they pick scientific problems.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Medical Satisfactory/No Credit

DBIO 220: Genomics and Personalized Medicine (GENE 210)

Principles of genetics underlying associations between genetic variants and disease susceptibility and drug response. Topics include: genetic and environmental risk factors for complex genetic disorders; design and interpretation of genome-wide association studies; pharmacogenetics; full genome sequencing for disease gene discovery; population structure and genetic ancestry; use of personal genetic information in clinical medicine; ethical, legal, and social issues with personal genetic testing. Hands-on workshop making use of personal or publicly available genetic data. Prerequisite: GENE 202, Gene 205 or BIOS 200.
Terms: not given this year | Units: 3 | Grading: Medical Option (Med-Ltr-CR/NC)

DBIO 234: Elements of Grant Writing

Focus is on training first year graduate students in proposal writing. In an intensive 4-week period, students learn fundamental skills focused on scientific proposal writing, including writing and criticizing a proposal on the scientific topic of their choice. Students encouraged to use these new skills and the proposal they create to apply for external funding to support their research training.
Terms: Aut | Units: 1 | Grading: Medical Satisfactory/No Credit
Instructors: Kim, S. (PI)

DBIO 257: The Biology of Stem Cells (HUMBIO 157)

The role of stem cells in human development and potential for treating disease. Guest lectures by biologists, ethicists, and legal scholars. Prerequisites: HumBio 2A and 3A, or the equivalent in the BioCore in Biological Sciences.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit

DBIO 273A: A Computational Tour of the Human Genome (BIOMEDIN 273A, CS 273A)

Introduction to computational biology through an informatic exploration of the human genome. Topics include: genome sequencing (technologies, assembly, personalized sequencing); functional landscape (genes, gene regulation, repeats, RNA genes, epigenetics); genome evolution (comparative genomics, ultraconservation, co-option). Additional topics may include population genetics, personalized genomics, and ancient DNA. Course includes primers on molecular biology, the UCSC Genome Browser, and text processing languages. Guest lectures from genomic researchers. No prerequisites. See http://cs273a.stanford.edu/.
Terms: Aut | Units: 3 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints