2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

211 - 220 of 291 results for: ME

ME 362A: Physical Gas Dynamics

Concepts and techniques for description of high-temperature and chemically reacting gases from a molecular point of view. Introductory kinetic theory, chemical thermodynamics, and statistical mechanics as applied to properties of gases and gas mixtures. Transport and thermodynamic properties, law of mass action, and equilibrium chemical composition. Maxwellian and Boltzmann distributions of velocity and molecular energy. Examples and applications from areas of current interest such as combustion and materials processing.
Terms: Aut | Units: 3

ME 362B: Nonequilibrium Processes in High-Temperature Gases

Chemical kinetics and energy transfer in high-temperature gases. Collision theory, transition state theory, and unimolecular reaction theory. Prerequisie: 362A or consent of instructor.
Last offered: Winter 2015

ME 363: Partially Ionized Plasmas and Gas Discharges

Introduction to partially ionized gases and the nature of gas discharges. Topics: the fundamentals of plasma physics emphasizing collisional and radiative processes, electron and ion transport, ohmic dissipation, oscillations and waves, interaction of electromagnetic waves with plasmas. Applications: plasma diagnostics, plasma propulsion and materials processing. Prerequisite: 362A or consent of instructor.
Terms: Spr | Units: 3
Instructors: Cappelli, M. (PI)

ME 364: Optical Diagnostics and Spectroscopy

The spectroscopy of gases and laser-based diagnostic techniques for measurements of species concentrations, temperature, density, and other flow field properties. Topics: electronic, vibrational, and rotational transitions; spectral lineshapes and broadening mechanisms; absorption, fluorescence, Rayleigh and Raman scattering methods; collisional quenching. Prerequisite: 362A or equivalent.
Terms: Win | Units: 3
Instructors: Hanson, R. (PI)

ME 367: Optical Diagnostics and Spectroscopy Laboratory

Principles, procedures, and instrumentation associated with optical measurements in gases and plasmas. Absorption, fluorescence and emission, and light-scattering methods. Measurements of temperature, species concentration, and molecular properties. Lab. Enrollment limited to 16. Prerequisite: 362A or 364.
Terms: Spr | Units: 4

ME 368: d.Leadership: Design Leadership in Context (MS&E 489)

d.Leadership is a course that teaches the coaching and leadership skills needed to drive good design process in groups. d.leaders will work on real projects driving design projects within organizations and gain real world skills as they experiment with their leadership style. Take this course if you are inspired by past design classes and want skills to lead design projects beyond Stanford. Preference given to students who have taken other Design Group or d.school classes. Admission by application. See dschool.stanford.edu/classes for more information
Terms: Win | Units: 1-3

ME 368A: Biodesign Innovation: Needs Finding and Concept Creation (BIOE 374A, MED 272A)

In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new medtech products to address them, and plan for their development into patient care. During the first quarter (winter 2017), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2017), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent medtech experts and investors. Class sessions include faculty-led instruction and case demonstrations, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of more than 40 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Win | Units: 4

ME 368B: Biodesign Innovation: Concept Development and Implementation (BIOE 374B, MED 272B)

In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new medtech products to address them, and plan for their development into patient care. During the first quarter (winter 2017), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring 2017), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent medtech experts and investors. Class sessions include faculty-led instruction and case demonstrations, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of more than 40 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Spr | Units: 4

ME 369: Cracks, Dislocations, and Waves

The 6-dimensional formalism of A. N. Stroh will be developed to treat two-dimensional problems in elastically anisotropic media. Stress fields of straight dislocations will be developed, from which the elastic fields of line cracks (treated as continuous distributions of straight dislocations) will be obtained along with stress intensity factors and energy release rates. Steady waves including plane waves, Rayleigh waves, and Stoneley waves will be treated along with problems of reflection and refraction of incident plane waves in joined anisotropic half-spaces. Anisotropic boundary element methods will be discussed. Assignments will include both analytical and semi-analytical work as well as simple numerical methods to implement Stroh's formalism. Class notes and readings will be provided.
Last offered: Winter 2013

ME 370A: Energy Systems I: Thermodynamics

Thermodynamic analysis of energy systems emphasizing systematic methodology for and application of basic principles to generate quantitative understanding. Exergy, mixtures, reacting systems, phase equilibrium, chemical exergy, and modern computational methods for analysis. Prerequisites: undergraduate engineering thermodynamics and computer skills such as Matlab.
Terms: Aut | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints