2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 9 of 9 results for: BIOS ; Currently searching spring courses. You can expand your search to include all quarters

BIOS 204: Practical Tutorial on the Modeling of Signal Transduction Motifs

Basics of ordinary differential equation modeling of signal transduction motifs, small circuits of regulatory proteins and genes that serve as building blocks of complex regulatory circuits. Morning session covers numerical modeling experiments. Afternoon session explores theory underpinning that day's modeling session. Modeling done using Mathematica, Standard Edition provided to enrolled students.
Terms: Spr | Units: 3
Instructors: Ferrell, J. (PI)

BIOS 205: Introduction to R

Autumn quarter enrollment limited to ADVANCE students; instructor consent required for enrollment. Topics include: basics of R (widely used, open-source programming and data analysis environment) programming language and data structures, reading/writing files, graphics tools for figure generation, basic statistical and regression operations, survey of relevant R library packages. Interactive format combining lectures and computer lab. For course and enrollment information, see http://bios205.stanford.edu.
Terms: Aut, Win, Spr | Units: 1
Instructors: Bagley, S. (PI)

BIOS 210: Axonal Transport and Neurodegenerative Diseases

Introduction to mechanisms underlying axonal transport, significance of proper regulation in maintaining neuronal activities, and its implication in disease pathology. Lab section: visualize axonal transport of various axonal organelles such as mitochondria, synaptic vesicles and dense core vesicles in live cells and tissues.
Terms: Spr | Units: 1
Instructors: Wang, X. (PI)

BIOS 211: Histology for Biosciences

Fundamentals of tissue organization as seen by light microscopy. Includes: epithelium, connective tissue, muscle, bone, cartilage, blood cells, nerve, and quick overview of several major organs. Each session has interactive 30 minutenpresentation followed by 1.5 hours viewing glass histology slides using individual microscopes and a multi-­headed microscope. Slide sessions interspersed with interactive exercises to stimulate discussions. Supporting materials include select readings from histology atlas, electron micrographs, and virtual (whole-slide) images provided online.
Terms: Spr | Units: 1
Instructors: Connolly, A. (PI)

BIOS 234: Personalized Genomic Medicine

Focuses on next-generation sequencing and its implications for personalized genomic medicine. Students gain hands-on experience with popular DNA sequence analysis tools as well as a practical understanding of the underlying algorithms and biomedicine.
Terms: Spr | Units: 1

BIOS 235: Metabolism and Metabolic Ecology: Microbes, Gut and Cancer

Preference to graduate students. Focuses on modern aspects of metabolism and metabolic biochemistry as it affects fitness and ecology of cells and organisms on a systems level. Students obtain a broad understanding of the governing principles and logic of metabolic pathways and their networks as well as an intuition of metabolism in context of natural selection and fitness acting on the cell or host. Emphasis is primarily on microorganisms and their habitats in nature and the human gut, but topics also include metabolism of cancer cells and of engineered microbes.
Terms: Spr | Units: 2
Instructors: Spormann, A. (PI)

BIOS 236: Developmental Biology in the Ocean: Comparative Embryology and Larval Development

Three-week course at Hopkins Marine Station. Focuses on the embryology and larval development of a broad range of marine invertebrate phyla. The goal of the course is to give students an appreciation of the range of developmental strategies and larval forms in the ocean and why this is critical for constructing hypotheses of EvoDevo and animal evolution. Includes observation and documentation of the development of embryos and larvae by scientific illustration and photo/video microscopy. Pre-requisite: Developmental Biology coursework and instructor consent.
Terms: Spr | Units: 4
Instructors: Lowe, C. (PI)

BIOS 244: Computer Applications in Pharmaceutical Research and Development

After a brief introduction to drug discovery and development process in pharmaceutical industry, we discuss integrative computational approaches to drug discovery, development, and marketing. Illustrative case studies and examples explain how applications are used at various stages, including bioinformatics, data mining, high-throughput screening, predicting human response to drugs, and adverse drug event monitoring.
Terms: Spr | Units: 1
Instructors: Khuri, N. (PI)

BIOS 246: Introduction to Meta-Analysis

Meta-analysis is the quantitative synthesis and analysis of a collection of independent studies. It provides a more objective and powerful way of summarizing evidence across studies than descriptive reviews. The importance and utility of this quantitative method for answering new questions and synthesizing existing results in different fields of scientific research is demonstrated by the dramatic increase in the number of studies using meta-analysis in the last ten years. Focuses on the basics of meta-analysis. The emphasis of the course is both on the conceptual understanding and practical use of this method, as applied to biological questions.
Terms: Spr | Units: 4
Instructors: Micheli, F. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints